METODE SENSUS POKOK TANAMAN KELAPA SAWIT MENGGUNAKAN SOFTWARE MAP SOURCE DAN AUTODESK MAP

Andrew Stefano, Sri Endayani, Fathiah Fathiah

Abstract


Mendapatkan data tanaman yang akurat sesuai dengan kondisi real di lapangan perlu dilakukan kegiatan sensus pokok secara teliti. Pada umumnya hasil kegiatan sensus pokok dituang ke dalam form blangko sensus (staple card). Data yang dihasilkan sering kali tidak akurat. Sebagai upaya untuk menghasilkan data sensus pokok yang lebih akurat, digunakanlah GPS (Global Positioning System) sebagai alat sensus. Kajian ini dilakukan untuk menentukan metode sensus pokok yang efektif dan efisien antara menggunakan staple card dan menggunakan GPS. Metode yang digunakan dalam pelaksanaan kajian ini, yaitu dengan melakukan pengamatan dan observasi di lapangan mengenai kedua metode sensus pokok yang dikaji. Parameter yang diamati yaitu biaya, waktu dan tenaga yang dibutuhkan, serta akurasi data yang dihasilkan masing–masing metode. Hasil kajian menunjukkan bahwa sensus pokok menggunakan GPS akan lebih efisien dan efektif, serta dapat menghasilkan profit yang lebih besar bagi perusahaan yaitu Rp.204.674/ha/tahun.


Keywords


Global Positioning System, Observasi, Staple card

Full Text:

PDF

References


Abkarian, H., Tahlyan, D., Mahmassani, H., & Smilowitz, K. (2022). Characterizing visitor engagement behavior at large-scale events : Activity sequence clustering and ranking using GPS tracking data. Tourism Management, 88(August 2021), 104421. https://doi.org/10.1016/j.tourman.2021.104421

Abu, H. (2022). ScienceDirect ScienceDirect ScienceDirect Crowdsensing Application on Coalition Game Using GPS and IoT Crowdsensing Application on Coalition Game Using GPS and IoT Parking in Smart Cities Parking in Smart Cities. Procedia Computer Science, 201, 535–542. https://doi.org/10.1016/j.procs.2022.03.069

Ashour, I., Tokhey, M. El, Mogahed, Y., & Ragheb, A. (2022). Performance of global navigation satellite systems ( GNSS ) in absence of GPS observations. Ain Shams Engineering Journal, 13(2), 101589. https://doi.org/10.1016/j.asej.2021.09.016

Bada, M., Eddine, D., Lagraa, N., Abdelaziz, C., Imran, M., & Shoaib, M. (2021). A policy-based solution for the detection of colluding GPS-Spoofing attacks in FANETs. Transportation Research Part A, 149(May), 300–318. https://doi.org/10.1016/j.tra.2021.04.022

Demissie, M. G., & Kattan, L. (2022). Estimation of truck origin-destination flows using GPS data. Transportation Research Part E, 159(January 2021), 102621. https://doi.org/10.1016/j.tre.2022.102621

Eirill, B., & Mj, C. (2022). Transportation Research Interdisciplinary Perspectives Use of GPS-data to improve transport solutions in a cost and environmental perspective. 13(September 2021). https://doi.org/10.1016/j.trip.2022.100557

Fang, J., He, M., Luan, W., & Jiao, J. (2021). Geodesy and Geodynamics Crustal vertical deformation of Amazon Basin derived from GPS and GRACE / GFO data over past two decades. Geodesy and Geodynamics, 12(6), 441–450. https://doi.org/10.1016/j.geog.2021.09.002

Faris, A. M., Zwain, H. M., Hosseinzadeh, M., & Sh, H. (2022). Start-up and operation of novel EN-MBBR system for sidestreams treatment and sensitivity analysis modeling using GPS-X simulation. Alexandria Engineering Journal, 61(12), 10805–10818. https://doi.org/10.1016/j.aej.2022.04.026

Friedrich, B. (2022). ScienceDirect ScienceDirect Benchmarking machine learning algorithms by inferring transportation modes from unlabeled GPS data. Transportation Research Procedia, 62(Ewgt 2021), 383–392. https://doi.org/10.1016/j.trpro.2022.02.048

Guo, B., Di, M., Song, F., Li, J., & Shi, S. (2021). Integrated coseismic displacement derived from high-rate GPS and strong-motion seismograph : Application to the 2017 Ms 7 . 0 Jiuzhaigou Earthquake. Measurement, 182(March), 109735. https://doi.org/10.1016/j.measurement.2021.109735

Gurbuz, G., Akgul, V., Gormus, K. S., & Kutoglu, S. H. (2021). Journal of Atmospheric and Solar-Terrestrial Physics Assessment of precipitable water vapor over Turkey using GLONASS and GPS. Journal of Atmospheric and Solar-Terrestrial Physics, 222(January), 105712. https://doi.org/10.1016/j.jastp.2021.105712

Habibie, T. J., Yasirandi, R., Oktaria, D., Habibie, T. J., Yasirandi, R., & Oktaria, D. (2022). ScienceDirect ScienceDirect The analysis of Pangandaran f f isherman ’ s isherman ’ s actual actual usage level of The analysis of Pangandaran usage level of GPS GPS based on model based on TAM model. Procedia Computer Science, 197(2021), 34–41. https://doi.org/10.1016/j.procs.2021.12.115

Halloran, J. O., Sophie, A., Bj, L., & Gyrd-hansen, D. (2021). Social Science & Medicine Time to retire ? A register-based study of GPs ’ practice style prior to retirement. 281(May). https://doi.org/10.1016/j.socscimed.2021.114099

Jiang, P., Wu, H., & Xin, C. (2021). DeepPOSE : Detecting GPS spoo fi ng attack via deep recurrent neural network. Digital Communications and Networks, September 2020. https://doi.org/10.1016/j.dcan.2021.09.006

Kenpankho, P., Chaichana, A., Trachu, K., & Supnithi, P. (2021). ScienceDirect Real-time GPS receiver bias estimation. Advances in Space Research, xxxx, 1–8. https://doi.org/10.1016/j.asr.2021.01.032

Kumar, S., Indira, S., & Vemuri, D. (2022). International Journal of Intelligent Networks Development and performance evaluation of Correntropy Kalman Filter for improved accuracy of GPS position estimation. International Journal of Intelligent Networks, 3(December 2021), 1–8. https://doi.org/10.1016/j.ijin.2022.01.002

Li, X., Zhong, B., Li, J., Liu, R., & Gfo, G. (2022). Geodesy and Geodynamics Analysis of terrestrial water storage changes in the Shaan-Gan-Ning Region using GPS and GRACE / GFO. Geodesy and Geodynamics, 13(2), 179–188. https://doi.org/10.1016/j.geog.2021.11.001

Liang, H., Zhan, W., & Li, J. (2021). ScienceDirect Vertical surface displacement of mainland China from GPS using the multisurface function method. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.02.024

Lv, J., Gao, Z., Kan, J., Lan, R., Li, Y., Lou, Y., & Yang, H. (2022). Modeling and assessment of multi-frequency GPS / BDS-2 / BDS-3 kinematic precise point positioning based on vehicle-borne data. Measurement, 189, 110453. https://doi.org/10.1016/j.measurement.2021.110453

Memarian, O., Mehdi, S., Alizadeh, S., & Tat, F. (2022). Journal of Asian Earth Sciences : X Deep learning of GPS geodetic velocity. Journal of Asian Earth Sciences: X, 7(September 2021), 100095. https://doi.org/10.1016/j.jaesx.2022.100095

Muhammad, S., Ibrahim, E., Kholil, M., & Anggara, O. (2021). Geodesy and Geodynamics Source of the 2019 M w 6 . 9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics, 12(4), 308–314. https://doi.org/10.1016/j.geog.2021.06.001

Nezhadshahbodaghi, M., & Mosavi, M. R. (2021). A loosely-coupled EMD-denoised stereo VO / INS / GPS integration system in GNSS-denied environments. Measurement, 183(April), 109895. https://doi.org/10.1016/j.measurement.2021.109895

Olsen, J. R., Caryl, F. M., Mccrorie, P., & Mitchell, R. (2022). Landscape and Urban Planning Socioeconomic inequality in Scottish children ’ s exposure to and use of natural space and private gardens , measured by GPS. Landscape and Urban Planning, 223(March), 104425. https://doi.org/10.1016/j.landurbplan.2022.104425

Othman, S. E., Salama, G. M., & Hamed, H. F. A. (2021). Heliyon Methodology for the remote transfer of GPS receiver station data through a GSM network. Heliyon, 7(March), e08330. https://doi.org/10.1016/j.heliyon.2021.e08330

Rout, A., Nitoslawski, S., Ladle, A., & Galpern, P. (2021). Computers , Environment and Urban Systems Using smartphone-GPS data to understand pedestrian-scale behavior in urban settings : A review of themes and approaches. Computers, Environment and Urban Systems, 90(February), 101705. https://doi.org/10.1016/j.compenvurbsys.2021.101705

Rupi, F., Poliziani, C., Rupi, F., & Schweizer, J. (2022). ScienceDirect ScienceDirect ScienceDirect Traffic surveys and GPS traces to explore patterns in cyclist ’ s Traffic surveys and GPS traces to explore patterns in cyclist ’ s in-motion speeds in-motion speeds. Transportation Research Procedia, 60(2021), 410–417. https://doi.org/10.1016/j.trpro.2021.12.053

Sadeghian, P., Zhao, X., Golshan, A., & Håkansson, J. (2022). A stepwise methodology for transport mode detection in GPS tracking data. Travel Behaviour and Society, 26(July 2021), 159–167. https://doi.org/10.1016/j.tbs.2021.10.004

Sadli, R., Afkir, M., Hadid, A., Rivenq, A., & Taleb-ahmed, A. (2022). ScienceDirect Map-Matching-Based Map-Matching-Based Localization Localization Using Using Camera Camera and and Low-Cost GPS For Accuracy GPS For Lane-Level Accuracy. Procedia Computer Science, 198(2021), 255–262. https://doi.org/10.1016/j.procs.2021.12.237

Sai, S., Rajana, K., Shrungeshwara, T. S., & Vivek, C. G. (2022). ScienceDirect Evaluation of long-term variability of ionospheric total electron content from IRI-2016 model over the Indian sub-continent with a latitudinal chain of dual-frequency geodetic GPS observations during 2002 to 2019. Advances in Space Research, 69(5), 2111–2125. https://doi.org/10.1016/j.asr.2021.12.005

Saracco, M., & Saracco, M. (2022). ScienceDirect Cyclist ’ s Cyclist ’ s waiting waiting time time estimation estimation at at intersections , intersections , a a case case study study with with GPS GPS traces traces from from Bologna Bologna. Transportation Research Procedia, 62(Ewgt 2021), 325–332. https://doi.org/10.1016/j.trpro.2022.02.041

Schwemmer, P., Rousseau, P., & Bocher, P. (2021). Forensic Science International : Animals and Environments Case Report GPS tracking data can document wind turbine interactions : Evidence from a GPS-tagged Eurasian curlew. 1. https://doi.org/10.1016/j.fsiae.2021.100036

Sharma, G. (2022). Geodesy and Geodynamics Manifestation of earthquake preparation zone in the ionosphere before the earthquake revealed by GPS e TEC data , a case of 2021 Sonitpur , Assam earthquake. Geodesy and Geodynamics, xxxx, 0–8. https://doi.org/10.1016/j.geog.2021.09.010

Sutton, L., Jose, K., Betzold, A., Hansen, E., Laslett, L., Makin, J., Winzenberg, T., Balogun, S., & Aitken, D. (2021). Osteoarthritis and Cartilage Open Understanding the management of osteoarthritis : A qualitative study of GPs and orthopaedic surgeons in Tasmania , Australia. Osteoarthritis and Cartilage Open, 3(4), 100218. https://doi.org/10.1016/j.ocarto.2021.100218

Vijayan, M. S. M., & Shimna, K. (2022). ScienceDirect Detecting aliasing and artifact free co-seismic and tsunamigenic ionospheric perturbations using GPS. Advances in Space Research, 69(2), 951–975. https://doi.org/10.1016/j.asr.2021.10.040

Wei, C., Gu, D., Shao, K., Liu, P., Zhu, W., & Zhu, J. (2022). ScienceDirect In-flight performance analysis and antenna phase center calibration of MEMS GPS receiver on-board TianQin-1 in the nadir-pointing and Sun-pointing modes. Advances in Space Research, 69(2), 1050–1059. https://doi.org/10.1016/j.asr.2021.10.039

Xu, J., & Liu, Z. (2021). International Journal of Applied Earth Observations and Geoinformation Radiance-based retrieval of total water vapor content from sentinel-3A OLCI NIR channels using ground-based GPS measurements. International Journal of Applied Earth Observation and Geoinformation, 104, 102586. https://doi.org/10.1016/j.jag.2021.102586

Zeeshan, M., Chu, H., & Burbey, T. J. (2021). Spatio-temporal estimation of monthly groundwater levels from GPS-based land deformation. Environmental Modelling and Software, 143(1), 105123. https://doi.org/10.1016/j.envsoft.2021.105123

Zhang, B., Niu, J., Li, W., Shen, Y., & Wu, T. (2021). ScienceDirect A single station ionospheric empirical model using GPS-TEC observations based on nonlinear least square estimation method. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.07.017

Zhu, Y., Jiang, M., & Yamamoto, T. (2022). Analysis on the driving behavior of old drivers by driving recorder GPS trajectory data. Asian Transport Studies, 8(July 2021), 100063. https://doi.org/10.1016/j.eastsj.2022.100063

Žunić, E., Delalić, S., & Đonko, D. (2020). Adaptive multi-phase approach for solving the realistic vehicle routing problems in logistics with innovative comparison method for evaluation based on real GPS data. Transportation Letters, 0(0), 1–14. https://doi.org/10.1080/19427867.2020.1824311




DOI: https://doi.org/10.31293/agrifor.v22i1.6316

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Agrifor : Jurnal Ilmu Pertanian dan Kehutanan

link ke situs budidaya tani

 Creative Commons License
AGRIFOR : Jurnal Ilmu Pertanian dan Kehutanan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

situs web mitra usaha tani