EVALUASI DAYA DUKUNG TIANG PANCANG ABUTMEN JEMBATAN GIRDER KELAS A

PADA PROYEK PEMBANGUNAN JEMBATAN PERNIAGAAN

KOTA SAMARINDA

Juddin

Mahasiswa Jurusan Teknik Sipil Universitas Tujuh Belas Agustus 1945

Samarinda

Email: juddin.rustamaras027@gmail.com

ABSTRAK

Pondasi tiang pancang merupakan salah satu jenis dari pondasi dalam yang

umum digunakan, yang berfungsi untuk menyalurkan beban struktur berlapisan

tanah keras yang mempunyai kapasitas daya dukung tinggi yang letaknya cukup

dalam di dalam tanah. Pada Proyek Pembangunan Jembatan Perniagaan Kota

Samarinda akan dicari nilai daya dukung aksial perencanaan pondasi tiang pancang

berdasarkan data N-SPT memakai metode Mayerhoff, dibandingkan dengan data

kalendering lapangan. Tujuan dari Tugas Akhir ini untuk menghitung daya dukung

tiang pancang dari hasil desain rencana dengan kalendering di lapangan dan

mengetahui deviasi dari desain rencana dengan kalendering di lapangan.

Selanjutnya menghitung penurunan elastis tiang pancang yang terjadi, serta

menghitung efesiensi dan daya dukung kelompok tiang. Berdasarkan pembebanan

pada pondasi kelompok tiang pancang, hasil yang diperoleh tidak melebihi daya

dukung ultimit tiang, sehingga aman untuk digunakan. Pondasi tiang pancang tidak

mengalami penurunan yang besar, sehingga aman untuk memikul beban diatasnya.

Kata Kunci: Kapasitas Daya Dukung, N-SPT, Kalendering

1

ABSTRACT

Pile foundation is one of the most common types deep foundation used, which serves to distribute the load of hard ground structures that have a high carrying capacity that is deep enough in the soil. In Samarinda City Perniagaan Bridge Construction Project will be searched for axial support capacity of pile foundation planning based on N-SPT data using Mayerhoff method, compared with field calendering data. The purpose of this Final Project is to calculate the support strength capacity of the pile foundation from the design of the plan with the calendering in the field and to know the deviation of the design plan with the calendering in the field. Next calculate the elastic decrease, and calculate the efficiency and carrying capacity of pile groups. Based on the load on the pile group foundation, the result obtained does not exceed the ultimate capability of the pole, so it is safe to use. Pile foundation does not decrease greatly, so it is safe to bear the load above it.

Keywords: Capacity of supporting strength, N-SPT, Calendering

PENDAHULUAN

Pondasi jembatan merupakan struktur bangunan bawah yang sangat penting karena sebagai penopang berdirinya bangunan yang terletak diatasnya. Hal yang pertama di perhitungkan adalah pembebanan yang di terima oleh struktur bawah jembatan berupa beban mati, beban bergerak atau beban hidup, gaya rem, tekanan tanah aktif, gaya gesekan dan beban gempa.

Secara umum pondasi di definisikan sebagai bangunan bawah tanah yang meneruskan beban yang berasal dari berat bangunan itu sendiri dan bangunan luar yang bekerja ke lapisan tanah di bawahnya.

Pemilihan pondasi didasarkan atas penyelidikan tanah yang menunjukkan bahwa lapisan tanah keras berada cukup dalam, dan melalui pengecekan terlebih dahulu kekuatan stabilitas abutmen. Bila ternyata stabilitas abutmen tidak memmenuhi syarat, maka pondasi tiang merupakan pilihan untuk mengatasi hal tersebut.

Berdasarkan kedalaman tertanam di dalam tanah, maka pondasi dibedakan menjadi pondasi dangkal dan pondasi dalam. Pada pondasi dalam dibedakan 2, yaitu pondasi *end bearing* dan pondasi *floating*.

Konfigurasi tiang pancang adalah susunan tiang pancang yang berdasarkan jumlah dan jarak tertentu. Menentukan jumlah tiang pancang dapat menggunakan persamaan pasti yaitu n = P/Qa, sedangkan menentukan jarak antar tiang pancang tidak ada persamaan pasti, hanya menggunakan range (batasan jarak) yaitu antara 1.5D s/d 3.5D.

Berdasarkan pembahasan jarak tiang pancang di atas bahwa hanya menggunakan range (batasan jarak) yaitu antara 1.5D s/d 3.5D, maka dikwatirkan apabila menggunakan range kecil (1.5D s/d 2.5D) sisi efisiensinya kontruksi tersebut terabaikan. Dari pengamatan penulis saat pelaksanaan di lapangan dan diverifikasi oleh gambar rencana, bahwa iarak tiang pancang pembangunan jembatan perniagaan Samarinda adalah 2.3D untuk arah y-y dan 2.7D untuk arah x-x.

Dari hasil pembahasan jarak tiang pancang pembangunan jembatan perniagaan Samarinda, penulis menilai terbukanya peluang untuk melakukan evaluasi daya dukung tiang pancang akibat dari jarak tiang pancang di atas. Namun parameter penulis untuk melakukan evaluasi tersebut dukung menggunakan daya saat pelaksanaan di lapangan (kalendering). Titik berat evaluasi penelitian ini adalah kekuatan dan efisien struktur pondasi jembatan perniagaan Samarinda.

TINJAUAN PUSTAKA

Klasifikasi Pondasi

Pondasi adalah struktur bagian bawah yang umumnya terletak dibawah permukaan tanah yang berfungsi untuk meneruskan gaya yang diterimanya ke lapisan tanah pendukung (bearing layers). Klasifikasi Berdasarkan dimana Beban itu ditopang oleh Tanah. Joseph E. Bowles dalam buku Analisis dan Desain fondasi menjelaskan fondasi dapat digolongkan menjadi dua yakni;

- 1. Pondasi dangkal dinamakan sebagai alas/telapak, telapak tersebar atau fondasi (mats). Kedalaman pada umumnya adalah berkisar 1 m 2 m atau Df/B = 1.
- 2. Pondasi dalam dinamakan sebagai tiang pancang, tembok/tiang yang

dibor. Kedalaman Df/B = 4. Df adalah kedalaman pondasi dan B adalah lebar pondasi.

Pondasi Dalam (Deep Foundation)

Pondasi Tiang

Adalah jenis pondasi yang mampu menahan gaya orthogonal ke sumbu tiang dari segala arah dan momen, pondasi tiang dibuat menjadi satu kesatuan dengan menyatukan pangkal tiang pancang yang terdapat dibawah konstruksi dengan tumpuan Jenis pondasi/abutment. ini diperuntukkan apabila kedalaman tenah keras kisaran > 10 - 50 m.

Tiang (*Pile*) adalah bagian dari suatu bagian konstruksi pondasi tiang.

Beberapa kondisi yang memerlukan pondasi tiang yaitu:

- Apabila tanah dasar di bawah bangunan tersebut tidak mempunyai daya dukung (bearing capacity), sedangkan tanah kerasnya yang mempunyai daya dukung yang cukup untuk memikul berat bangunan dan bebannya letaknya sangat dalam.
- 2 Ketika menerima gaya-gaya horizontal, pondasi tiang dapat

melawan tekuk sementara menerima gaya-gaya vertikal yang datang dari struktur atasnya.

- Pondasi untuk jenis struktur ini untuk menahan gaya angkat.
- 4 Menghindari kemungkinan kehilangan daya dukung dari sebuah pondasi dangkal yang bisa jadi disebabkan oleh erosi pada permukaan tanah

Pondasi Tiang dibagi dalam kategori:

- **Tiang** Baja, Tiang baja a. umumnya digunakan baik sebagai tiang pipa maupun sebagai baja penambang H. Tiang pipa dapat diserongkan ke dalam tanah dengan ujung terbuka atau tertutup. Tiang baja apabila diperlukan disambungkan dengan las atau paku keling.
- b. **Tiang Beton**, Tiang beton dapat dibagi ke dalam 2 (dua) kategori yaitu:
 - ▶ Tiang Pracetak (Precast
 Piles), Tiang pracetak dapat
 dibuat dengana
 menggunakan beton
 bertulang biasa, yang

penampangnya bisa jadi bujur sangkar atau segi delapan (octagonal).

Tiang Bor Dicor di
Tempat (Cast-In-SituPiles), Cor di tempat
dengan terlebih dahulu
menggali lubang di tanah
dan mengisinya dengan
beton.

Daya Dukung Tiang

Ditinjau dari cara mendukung beban, tiang dapat dibagi menjadi 2 (dua) macam, yaitu:

a. Tiang dukung ujung (end bearing pile)

Tiang dukung ujung adalah tiang kapasitas dukungnya ditentukan oleh tahanan ujung tiang, tiang-tiang dipancang sampai mencapai batuan dasar atau lapisan keras lain yang dapat mendukung beban yang tidak menyebabkan penurunan berlebihan. Kapasitas tiang sepenuhnya ditentukan dari tahanan dukung lapisan keras yang berada di bawah ujung tiang.

b. Tiang gesek (friction pile)

Tiang gesek adalah tiang yang kapasitas dukungnya lebih ditentukan oleh perlawanan gesek antara dinding tiang dan tanah di sekitarnya.

Pada dasarnya kapasitas daya dukung tiang dapat dihitung dengan persamaan dasar yang dikemukakan oleh *Tomlinson* (1977) berikut:

$$Q_u = Q_p + Q_s - W_p$$

Dimana:

 Q_u = Tahanan ultimit tiang

 Q_p = Tahanan ujung tiang (end bearing)

 Q_s = Tahanan selimut tiang (skin friction)

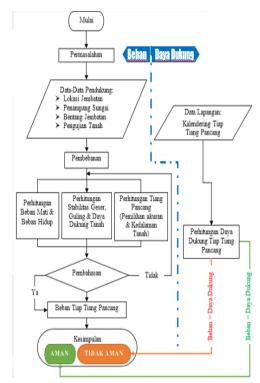
 W_p = Berat tiang

Biasanya harga *Wp* (weight of the pile) ini diabaikan karena sangat kecil pengaruhnya terhadap daya dukung ultimit tiang. Namun dalam beberapa kondisi seperti tiang pancang pada konstruksi lepas pantai, harga *Wp* diperhitungkan karena panjang tiang yang cukup besar, sehingga dapat ditulis:

$$Q_u = Q_p + Q_s$$

Dimana:

 Q_u = Tahanan ultimit tiang


 Q_p = Tahanan ujung tiang (end bearing)

 Q_s = Tahanan selimut tiang (skin friction)

Kapasitas Daya Dukung Tiang Pancang Dari Hasil Kalendering

Untuk perencanaan daya dukung tiang pancang dari hasil calendering ada tiga metode yang digunakan, yaitu metode Danish Formula, metode *Hilley Formula* dan metode *modified New ENR*.

METODE PENELITIAN

ANALISA DAN PEMBAHASAN

Data sekunder

No.	Perusahaan	Jenis Data	No. Lanpiran
1.	PT. WASKITA UTAMA	a. Gambar Design b. Data Penyelidikan Tanah	Lampiran 1 Lampiran 2
2.	CV. BINA CIPTA CONSULTANT	a. As Built Drawing b. Foto Dokumentasi	Lampiran 3 Lampiran 4
3.	PT. ABEL BERSAUDARA	a. Data Kalendering b. Jenis & Kafasitas Alat Pancang	Lampiran 5 Lampiran 6

Data Sekunder

Dalam penelitian ini penulis mendapatkan data dari buku-buku referensi yang diperlukan untuk menyelesaikan tugas akhir.

Data pondasi

Bahan/Ma	Bahan/Material Pondasi					Tiang Pancang Baja		
Mutu Beton	K =		300	Tegang	Tegangan leleh ba			
Kuat tekan beton	f _c 1=	24,	9 MPa	$f_v =$	240000	kPa		
Mutu baja tulangan	U =		39	Diameter	tiang pan	cang		
Tegangan leleh baja	$f_v =$	390) MPa	D =	0,50	m		
Moduluselastisitas beto	n E _c =	234	453 MPa	Panjang	tiang pand	cang		
Berat beton bertulang	W _c =	`2:	5 kN/m ³	L =	61,00	m		
Dimensi Pile Cap								
Lebar arah x ₁ B _x =	3,60	m	Tebal	$h_0 = h_0 =$	0,80	m		
Lebar arah y ₁ B _v =	11,00	m	Tebal	h ₉ =	0,80	m		
Depan b _v =	1,15	m	Belakang	$L_2 = b_6 =$	0,70	m		
			Badan	$B_d = b_7 =$	2,15	m		
	Data S	Susuna	n Tiang Pa	ncang				
Jarak pusat tiang terlua	r terhadaı	sisi lua	ar pile-cap a	ırah xa =	0,65	m		
Jarak pusat tiang terlua	r terhada	sisi lua	ar pile-cap a	ırah yb = a =	0,65	m		
Jumlah baris tiang pancang n _v =					8,00	buah		
Jumlah tiang pancang dalam 1 baris n _x =					3,00	buah		
Jarak antar tiang pancang arah x (1,5*D s/d 3,5*D) X =					1,150	m		
Jarak antar tiang panca	ng arah y	(1,5*D	s/d 3,5*D)	Y =	1,386	m		

Dimensi penampang abutmen

Notasi	Dimensi (m)	Notasi	Dimensi (m)	Keterangan	Notasi	Dimensi (m)
hı	-	b 0	1,30	Panjang Abudment	Ba	10,00
h ₂	-	b ₁	0,50	Tebal Wing Wall	$h_{\rm w}$	0,45
h ₃	1,15	b ₂	0,50	Tanah Ti	mbunan	ı
h ₄	-	b ₃	-	Berat volume Ws=	17,20	kN/m^3
h ₅	0,30	b4	-	Sudut geser 0 =	35,00	0
h ₆	0,50	b 5	1,00	Kohesi c=	0,00	kPa
h9	0,80	b6	1,15	Bahan S	truktur	
С	1,07	b 7	2,15	Mutu beton	K	- 300
d	2,22	b ₈	0,70	Mutu baja tulangan	Ţ	J- 39
		b9	0,75			
		B_x	3,60			
		B_y	11,00			

Data struktur bawah

No.	Y _{max} =	1,150	m		X _{max} =	4,85	n	1
1	Y _l =	1,150	$Y_1^2 =$	21,16	$X_1 =$	0,69	$X_1^2 =$	2,8
2	Y2=	-	$Y_2^2 =$	-	X2 =	2,08	X22=	25,923
3	Y3=	-	$Y_3^2 =$	-	X3 =	3,46	$X_3^2 =$	72,008
4	Y4=	-	$Y_4^2 =$	-	X4 =	4,85	X42=	141,135
			$\Sigma V^2 =$	21.16			ΣX ² =	241.946

Data struktur atas

Uraian Dimensi	Notasi	Dimensi	Satuan
Lebar jalan (jalur lalu-lintas)	b ₁	7,00	m
Lebar trotoar (pejalan kaki)	b ₂	1,00	m
Lebar jembatan	ь	9,00	m
Tebal tepi slab lantai jembatan	Tsl	0,20	m
Tebal tengah slab lantai jembatan	Ts2	0,27	m
Tebal rata-rata slab lantai jembatan	ΣT_s	0,24	m
Tebal trotoar	Tt	0,30	m
Tebal genangan air hujan	Th	0,05	m
Tinggi girder baja	ht	1,90	m
Tinggi bidang samping jembatan	h _a	3,25	m
Jarak antar gerder	S	1,50	m
Panjang benteng jembatan	L	40,00	m
Specific Gravity		kN/m ³	
Berat beton bertulang	W _c =	25	
Berat beton tidak bertulang (beton rabat)	W _c =	24	
Berat aspal	W _a =	22	
Berat jenis air	W _w =	9,8	

Berat sendiri struktur atas

D.L	Parameter Volume				Berat	Satuan	Berat
Берап	b (m)	t (m)	L (m)	n	(kN)		(kN)
Slab/lantai jembatan	9,00	0,24	40,00	1,00	25,00	kN/m^3	2115,00
Bondec	0,60		1,65	370,00	1,90	kN/m^3	695,97
Trotoar	1,00	0,30	40,00	2,00	25,00	kN/m^3	600,00
Girder Baja B40					86,832	Ton	868,32
	Bondec Trotoar	Beban b (m) Slab/lantai jembatan 9,00 Bondec 0,60 Trotoar 1,00	Beban b (m) t (m) Slab/lantai jembatan 9,00 0,24 Bondec 0,60	Beban b (m) t (m) L (m) Slab/lantai jembatan 9,00 0,24 40,00 Bondec 0,60 1,65 1,65 Trotoar 1,00 0,30 40,00	Beban b (m) t (m) L (m) n Slab/lantai jembatan 9,00 0,24 40,00 1,00 Bondec 0,60 1,65 370,00 Trotoar 1,00 0,30 40,00 2,00	Beban b (m) t (m) L (m) n (kN) Slab/lantai jembatan 9,00 0,24 40,00 1,00 25,00 Bondec 0,60 1,65 370,00 1,90 Trotoar 1,00 0,30 40,00 2,00 25,00	Beban b (m) t (m) L (m) n (kN) Slab/lantai jembatan 9,00 0,24 40,00 1,00 25,00 kN/m³ Bondec 0,60 1,65 370,00 1,90 kN/m³ Trotoar 1,00 0,30 40,00 2,00 25,00 kN/m³

Total berat sendiri struktur atas

W_{MS} = 4279,29

Berat sendiri struktur bawah

No.	Para	ametei	Berat Ba	gian	Berat	T	Momen
110.	b	h	Bentuk	Direc	(kN)	Lengan (m)	(kNm)
	Abutme	ent	Dentuk	Direc	(KI1)	(III)	(KIVIII)
1	0,50	2,22	1,00	-1,00	277,50	0,350	-97,13
2	0,50	1,07	1,00	-1,00	133,75	0,850	-113,69
3	2,15	0,50	1,00	-1,00	268,75	0,025	-6,72
4	3,60	0,80	1,00	-1,00	720,00	0,48	345,60
	Wing W	all					
5	2,00	2,72	1,00	-1,00	122,40	2,450	-299,88
6	0,50	1,15	1,00	-1,00	12,94	0,850	-11,00
	Tana	h					
7	0,70	2,72	1,00	-1,00	298,01	1,450	-432,12
8	0,50	1,15	1,00	-1,00	90,00	0,850	-76,50
				P _{MS} =	1923,35	$M_{MS} =$	-1382,63

Kombinasi beban kerja pada

pondasi

	Kombinasi	Tegangan	P	T_x	T_{v}	Мх	M_{v}
No.	Pembebanan	Berlebihan	(kN)	(kN)	(kN)	(kN/m)	(kN/m)
1	Kombinasi-1	0%	5409,26	677,60	0,00	1169,30	0,00
2	Kombinasi-2	25%	5446,01	802,60	96,47	1626,76	305,87
3	Kombinasi-3	40%	5446,01	1235,81	96,47	3151,63	305,87
4	Kombinasi-4	40%	5446,01	1285,31	96,47	3301,12	305,87
5	Kombinasi-5	50%	4330,03	636,51	827,47	616,72	1113,03

Gaya aksial pada tiang pancang arah X

	Kombinasi	P	M_{x}	P/n	$M_x*X/\Sigma X^2$	P_{max}	P_{min}
No.	Pembebanan	(kN)	(kNm)	(kN)	(kN)	(kN)	(kN)
1	Kombinasi-1	5.409,26	1.169,30	225,39	23,44	248,83	201,95
2	Kombinasi-2	5.446,01	1.626,76	226,92	32,61	259,53	194,31
3	Kombinasi-3	5.446,01	3.151,63	226,92	63,18	290,09	163,74
4	Kombinasi-4	5.446,01	3.301,12	226,92	66,17	293,09	160,74
5	Kombinasi-5	4.330,03	616,72	180,42	12,36	192,78	168,06

Gaya aksial pada tiang pancang arah Y

N.T.	Kombinasi	P	M_y	P/n	$M_y*X/\Sigma Y^2$	Pmax	Pnin
No.	Pembebanan	(kN)	(kNm)	(kN)	(kN)	(kN)	(kN)
1	Kombinasi-1	5.409,26	0,00	225,39	0,00	225,39	225,39
2	Kombinasi-2	5.446,01	305,87	226,92	16,62	243,54	210,29
3	Kombinasi-3	5.446,01	305,87	226,92	16,62	243,54	210,29
4	Kombinasi-4	5.446,01	305,87	226,92	16,62	243,54	210,29
5	Kombinasi-5	4.330,03	1.113,03	180,42	60,49	240,91	119,93

Gaya lateral pada tiang pancang

	Kombinasi	T_x	T_y	Tmax	Hmax
No.	Pembebanan	(kN)	(kN)	(kN)	(kN)
1	Kombinasi-1	677,60	0,00	677,60	28,23
2	Kombinasi-2	802,60	96,47	808,21	33,68
3	Kombinasi-3	1235,81	96,47	1.239,45	51,65
4	Kombinasi-4	1285,31	96,47	1.288,81	53,71
5	Kombinasi-5	636,51	827,47	1.043,96	43,50

Rekap Daya Dukung Aksial Tiang

No.	Uraian Daya Dukung Aksial Tiang	P(kN)	
1	Berdasarkan kekuatan bahan		851,02
3	Berdasarkan hasil SPT (Mayerhoff)	850,48	
Daya	dukung aksial terkecil	850,48	
Diami	oil daya dukung aksial tiang pancang	850,00	

Rekap Daya Dukung Lateral Tiang

No.	No. Uraian Daya Dukung Aksial Tiang Pancang						
1	105,85						
2	2 Berdasarkan momen maksimum						
	Daya dukung aksial terkecil H =						
Diar	Diambil daya dukung lateral tiang pancang: H _{ijin} =						

Kontrol Daya Dukung Ijin Tiang Pancang Arah X

No.	Kombinasi Pembebanan	P _{ijin} (%)	P _{max} (kN)	Kontrol Terhadap Daya Dukung Ijin	P_{ijin}	Ket.	Sf
1	Komb 1	100%	225,39	< 100 % * P _{ijin} =	850,00	Ok	3,697
2	Komb 2	125%	243,54	< 125% * P _{ijin} =	1062,50	Ok	4,283
3	Komb 3	140%	243,54	< 140% * P _{ijin} =	1190,00	Ok	4,796
4	Komb 4	140%	243,54	< 140% * P _{ijin} =	1190,00	Ok	4,796
5	Komb 5	150%	240,91	< 150% * P _{ijin} =	1275,00	Ok	5,292

Kontrol Daya Dukung Ijin Tiang Pancang Arah Y

No.	Kombinasi Pembebanan	P _{ijin} (%)	P _{max} (Kn)	Kontrol Terhadap Daya Dukung Ijin	P _{ijin}	Ket.	Sf
1	Komb 1	100%	248,83	< 100 % * P _{ijin} =	850,00	Ok	3,341
2	Komb 2	125%	259,53	< 125% * P _{ijin} =	1062,50	Ok	4,008
3	Komb 3	140%	290,09	< 140% * P _{ijin} =	1190,00	Ok	4,024
4	Komb 4	140%	293,09	< 140% * P _{ijin} =	1190,00	Ok	3,984
5	Komb 5	150%	192,78	< 150% * P _{ijin} =	1275,00	Ok	6,614

Daya Dukung Ijin Lateral

No.	Kombinasi	P_{ijin}	H_{max}	į	Kontrol terhadap			11	Ket.	SF
INO.	Pembebanan	(%)	(kN)]	Daya dukung ijin			Hijin	Ket.	
1	Kombinasi - 1	100%	28,23	<	100%	*	P _{ijin} =	97,00	Aman	3,436
2	Kombinasi - 2	125%	33,68	٧	125%	*	$P_{ijin} =$	121,25	Aman	3,600
3	Kombinasi - 3	140%	51,65	~	140%	*	$P_{ijin} =$	135,80	Aman	2,629
4	Kombinasi - 4	140%	53,71	<	140%	*	P _{ijin} =	135,80	Aman	2,529
5	Kombinasi - 5	150%	43,50	٧	150%	*	$P_{ijin} =$	145,50	Aman	3,345

Stabilitas Guling Terhadap Arah X

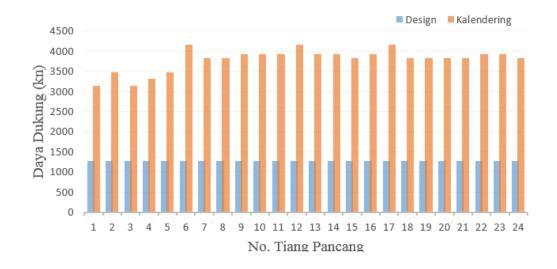
No.	Kombinasi	K	Vertikal	M_x	M _{px}	SF	Ket.	
NO.	Pembebanan	K	P (kN)	(kNm)	(kNm)	16		
1	Komb 1	0%	5.409,26	1.169,30	9.736,67	8,33	>2,2(OK)	
2	Komb 2	25%	5.446,01	1.626,76	12.253,52	7,53	>2,2(OK)	
3	Komb 3	40%	5.446,01	3.151,63	13.723,94	4,35	>2,2(OK)	
4	Komb 4	40%	5.446,01	3.301,12	13.723,94	4,16	>2,2(OK)	
5	Komb 5	50%	4.330,03	616,72	11.691,09	18,96	>2,2(OK)	

Stabilitas Guling Terhadap Arah Y

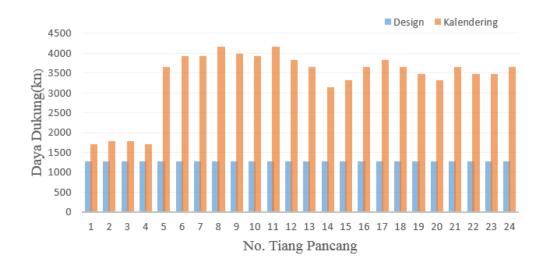
No	Kombinasi	K	Vertikal	ertikal My M _{py}		SF	Ket.
	Pembebanan	I.	P (kN)	(kNm)	(kNm)	31	IXCI.
1	Komb 1	0%	5.409,26	-	29.750,93	-	>2,2(OK)
2	Komb 2	25%	5.446,01	305,87	37.441,32	122,41	>2,2(OK)
3	Komb 3	40%	5.446,01	305,87	41.934,27	137,10	>2,2(OK)
4	Komb 4	40%	5.446,01	305,87	41.934,27	137,10	>2,2(OK)
5	Komb 5	50%	4.330,03	1.113,03	35.722,76	32,10	>2,2(OK)

Rekap Beban Yang Dipikul Masing - Masing Tiang

No. Tiang	Kon	ıb-1	Kon	nb-2	Kom	b-3	Kon	nb-4	Ko	mb-5	Nilai	Nilai
140. Hang	q_{max}	q_{min}	Tertinggi	Terendah								
1	204,20	246,57	198,21	255,62	170,59	283,25	167,88	285,95	172,03	188,80	285,95	167,88
2	225,39	225,39	227,68	226,15	227,68	226,15	227,68	226,15	183,21	177,63	227,68	177,63
3	246,57	204,20	257,15	196,68	284,78	169,06	287,49	166,35	194,38	166,46	287,49	166,35
4	204,20	246,57	197,99	255,84	170,37	283,46	167,66	286,17	171,24	189,60	286,17	167,66
5	225,39	225,39	227,46	226,37	227,46	226,37	227,46	226,37	182,41	178,43	227,46	178,43
6	246,57	204,20	256,93	196,90	284,56	169,27	287,27	166,57	193,58	167,25	287,27	166,57
7	204,20	246,57	197,78	256,06	170,15	283,68	167,44	286,39	170,44	190,40	286,39	167,44
8	225,39	225,39	227,25	226,59	227,25	226,59	227,25	226,59	181,61	179,22	227,25	179,22
9	246,57	204,20	256,72	197,12	284,34	169,49	287,05	166,79	192,79	168,05	287,05	166,79
10	204,20	246,57	197,56	256,28	169,93	283,90	167,22	286,61	169,64	191,19	286,61	167,22
11	225,39	225,39	227,03	226,81	227,03	226,81	227,03	226,81	180,82	180,02	227,03	180,02
12	246,57	204,20	256,50	197,34	284,12	169,71	286,83	167,00	191,99	168,85	286,83	167,00
13	204,20	246,57	197,34	256,50	169,71	284,12	167,00	286,83	168,85	191,99	286,83	167,00
14	225,39	225,39	226,81	227,03	226,81	227,03	226,81	227,03	180,02	180,82	227,03	180,02
15	246,57	204,20	256,28	197,56	283,90	169,93	286,61	167,22	191,19	169,64	286,61	167,22
16	204,20	246,57	197,12	256,72	169,49	284,34	166,79	287,05	168,05	192,79	287,05	166,79
17	225,39	225,39	226,59	227,25	226,59	227,25	226,59	227,25	179,22	181,61	227,25	179,22
18	246,57	204,20	256,06	197,78	283,68	170,15	286,39	167,44	190,40	170,44	286,39	167,44
19	204,20	246,57	196,90	256,93	169,27	284,56	166,57	287,27	167,25	193,58	287,27	166,57
20	225,39	225,39	226,37	227,46	226,37	227,46	226,37	227,46	178,43	182,41	227,46	178,43
21	246,57	204,20	255,84	197,99	283,46	170,37	286,17	167,66	189,60	171,24	286,17	167,66
22	204,20	246,57	196,68	257,15	169,06	284,78	166,35	287,49	166,46	194,38	287,49	166,35
23	225,39	225,39	226,15	227,68	226,15	227,68	226,15	227,68	177,63	183,21	227,68	177,63
24	246,57	204,20	255,62	198,21	283,25	170,59	285,95	167,88	188,80	172,03	285,95	167,88


Data Lapangan Abutmen Sisi Belibis

Data Lapangan Abutmen Sisi Pasar Segiri


No	Daya	Dukung	Beban Yang	S	SF.
INO	Design	Lapangan	di Pikul	Design	Lapangan
1		3.139,50	285,95	4,46	10,98
2		3.480,90	227,68	5,60	15,29
3		3.139,50	287,49	4,43	10,92
4		3.310,20	286,17	4,46	11,57
5		3.480,90	227,46	5,61	15,30
6		4.163,70	287,27	4,44	14,49
7		3.822,30	286,39	4,45	13,35
8		3.822,30	227,25	5,61	16,82
9		3.933,00	287,05	4,44	13,70
10		3.933,00	286,61	4,45	13,72
11		3.933,00	227,03	5,62	17,32
12	1.275,00	4.163,70	286,83	4,45	14,52
13	1.275,00	3.933,00	286,83	4,45	13,71
14		3.933,00	227,03	5,62	17,32
15		3.822,30	286,61	4,45	13,34
16		3.933,00	287,05	4,44	13,70
17		4.163,70	227,25	5,61	18,32
18		3.822,30	286,39	4,45	13,35
19		3.822,30	287,27	4,44	13,31
20		3.822,30	227,46	5,61	16,80
21		3.822,30	286,17	4,46	13,36
22		3.933,00	287,49	4,43	13,68
23		3.933,00	227,68	5,60	17,27
24		3.822,30	285,95	4,46	13,37

NI-	Daya	Dukung	Beban Yang		SF
No	Design	Lapangan	di Pikul	Design	Lapangan
1		1.710,50	285,95	4,46	5,98
2		1.785,00	227,68	5,60	7,84
3		1.785,00	287,49	4,43	6,21
4		1.710,50	286,17	4,46	5,98
5		3.651,60	227,46	5,61	16,05
6		3.933,00	287,27	4,44	13,69
7		3.933,00	286,39	4,45	13,73
8		4.163,70	227,25	5,61	18,32
9		3.993,00	287,05	4,44	13,91
10		3.933,00	286,61	4,45	13,72
11		4.163,70	227,03	5,62	18,34
12	1.275,00	3.822,30	286,83	4,45	13,33
13	1.275,00	3.651,60	286,83	4,45	12,73
14		3.139,50	227,03	5,62	13,83
15		3.310,20	286,61	4,45	11,55
16		3.651,60	287,05	4,44	12,72
17		3.822,30	227,25	5,61	16,82
18		3.651,60	286,39	4,45	12,75
19		3.480,90	287,27	4,44	12,12
20		3.310,20	227,46	5,61	14,55
21		3.651,60	286,17	4,46	12,76
22		3.480,90	287,49	4,43	12,11
23		3.480,90	227,68	5,60	15,29
24		3.651,60	285,95	4,46	12,77

Daya Dukung Tiang Pancang Setiap Tiang Sisi Jalan Belibis

Daya Dukung Tiang Pancang Setiap Tiang Sisi Pasar Segiri

Kesimpulan

Dari hasil analisisa pada BAB IV dan tujuan penelitan dapat disimpulkan beberapa hal mengenai perbandingan daya dukung tiang pancang abutmen jembatan girder kelas A pada proyek pembangunan jembatan perniagaan kota Samarinda, berdasarkan perhitungan rencana dengan daya dukung lapangan dari hasil kalendering yaitu:

 Perbedaan daya dukung pondasi tiang pancang rencana dibandingkan daya dukung berdasarkan kalendering sangat jauh, daya dukung pondasi tiang pancang rencana berdasarkan perhitungan adalah 1275,00 kN untuk ke-2 abutmen. Sedangkan daya dukung tiang pancang berdasarkan kalendering nilainya beragam setiap titik tiang pancang untuk ke-2 abutmen, nilai daya dukung tiang pancang berdasarkan kalendering antara 1710.50 kN sampai dengan 4163,70 kN.

2 Standar deviasi daya dukung pondasi tiang pancang rencana adalah 0,00 karena datanya tunggal, sedangkan standar deviasi kalenderingdengan data beragam adalah 621,36 dan Pemilihan jumlah tiang pancang berdasarkan daya dukung kalendering sudah benar, karena beberapa titik pada tiang pancang daya dukung kalenderingnya hampir mendekati beban ultimit per tiang pancang.

3 Grafik perbandingan daya dukung design terhadap daya dukung kalendering dapat dilihat pada Grafik di atas.

Daftar Pustaka

Bowlesh, J. E., 1991, Analisa dan
Desain Pondasi, Edisi keempat
Jilid 1, Erlangga, Jakarta. Das,
M. B., 1941, Principles of
Foundation Engineering
Fourth Edition, Library of
Congress Cataloging in
publication Data,

Hardiatmo, H. C., 1996, Teknik Pondasi 1, PT. Gramedia Pustaka Utama, Jakarta.

Hardiatmo, H. C., 2002, Teknik Pondasi 2, Edisi Kedua,Beta Offset, Yogyakarta, Petunjuk Praktikum Mekanika Tanah.

Poulus,H.G dan Davis, E.H.1968, The Settlement Behaviour of single Axially Loaded Incompressible Piles and piers, Geothecnique, Hardiyatmo, H.C

Sardjono, H.S 1998, Pondasi tiang pancang, jilid 1,Penerbit Sinar Jaya Wijaya, Surabaya.

Sardjono , H.S 1998, Pondasi tiang pancang, jilid 2, Penerbit Sinar Jaya Wijaya, Surabaya. Titi H. H. and Farsakh, M. A. Y., 1999, Evaluation Of Bearing capacity of Piles from cone Penetration Test, Lousiana, Dasar-dasar Perencanaan Beton Bertulang / CUR,erlangga, Jakarta

Wahyu Hidayat, 2008, Tugas Akhir
Analisis Daya Dukung
Pondasi Tiang Pancang Pada
Proyek Pembangunan Islamic
Center Kabupaten KamparRiau, Fakultas Teknik, Jurusan
Teknik Sipil, Program
Ekstension, Universitas
Sumatera Utara, Medan

Peraturan Muatan untuk Jembatan jalan raya, No. 12/1970,Direktorat Jenderal Bina Marga.

Sistem Manajemen Jembatan – BMS – Pertauran Perencanaan Jembatan Bagian 2 Beban Jembatan 1992.