ANALISA PEMENUHAN KEBUTUHAN AIR BERSIH DI KELURAHAN SINDANG SARI KECAMATAN SAMBUTAN KOTA SAMARINDA

Mohammad Syairi 16.11.1001.7311.046

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SAMARINDA SAMARINDA 2020

INTISARI

Air sangatlah penting karena berperan dalam kelestarian alam beserta isinya. jika tidak ada air atau kekurangan air di muka bumi ini. Maka, akan muncul ketidakselarasan di bumi ini. Karena keberadaan air dianggap sangat penting untuk keseimbangan alam. Terlebih lagi, diketahui bahwa hampir 75 % permukaan bumi ditutupi oleh air.

Perhitungan yang dilakukan adalah menghitung jumlah kebutuhan air bersih 10 (sepuluh) tahun kedepan kemudian menghitung kecepatan aliran dan kehilangan tekanan pada pipa distribusi.

Berdasarkan dari hasil analisa proyeksi pertumbuhan penduduk di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda pada tahun 2020 jumlah penduduk sebesar 3.893 jiwa dengan kebutuhan air bersih = 2,55 liter/detik, sedangkan pada tahun rencana 2029 jumlah penduduk sebesar 5.944 jiwa dengan kebutuhan air bersih = 3,79 liter/detik, Kecepatan Aliran rata-rata (V) = 7,205/23 = 0,313 m/detik, dan Kehilangan Tekanan Pada Pipa (Head Loss) rata-rata = 2,293/23 = 0,100 m.

Kata Kunci: Air Besih, Kebutuhan Air Bersih, Kecepatan Aliran, Kehilangan Tekanan.

ABSTRACT

Water is very important because it plays a role in preserving nature and its contents. if there is no water or lack of water on this earth. Thus, disharmony will appear on this earth. Because the presence of water is considered very important for the balance of nature. What's more, it is known that nearly 75% of the earth's surface is covered by water.

The calculation is done is to calculate the amount of clean water needs in the next 10 (ten) years then calculate the flow velocity and pressure loss in the distribution pipe.

Based on the results of the analysis of population growth projections in Sindang Sari Village, Sambutan District, Samarinda City in 2020 the population is 3,893 people with a need for clean water = 2.55 liters / second, while in the plan year 2029 the population is 5,944 people with clean water needs. = 3.79 liters / second, average flow velocity (V) = 7.205/23 = 0.313 m/s, and average head loss = 2.293/23 = 0.100 m.

Keywords: Clean Water, Clean Water Needs, Flow Speed, Loss of Pressure.

BAB I PENDAHULUAN

Latar Belakang

Air sangatlah penting karena berperan dalam kelestarian alam beserta isinya. jika tidak ada air atau kekurangan air di muka bumi ini. Maka, akan muncul ketidakselarasan di bumi ini. Karena keberadaan air dianggap sangat penting untuk keseimbangan alam. Terlebih lagi, diketahui

bahwa hampir 75 % permukaan bumi ditutupi oleh air. Jika dihitung volume, air bisa mencapai sekitar 1,4 triliun kilometer kubik di bumi ini. Di mana sebagian besar air terdapat di Kutub Utara dan Kutub Selatan.

Rumusan Masalah Penelitian

Adapun rumusan masalah pada penelitian ini adalah sebagai berikut:

1. Berapakah kebutuhan air bersih untuk

- proyeksi 10 (Sepuluh) tahun kedepan di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda ?
- Berapakah kecepatan aliran dan kehilangan tekanan pada pipa distribusi di Kelurahan Sungai Siring, Kecamatan Sambutan Kota Samarinda?

Batasan Masalah Penelitian

Sesuai rumusan masalah yang telah disebutkan diatas maka batasan masalah dalam penelitian ini adalah :

- Perhitungan hanya menghitung Jumlah kebutuhan air bersih 10 (sepuluh) tahun kedepan di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda.
- Menghitung kecepatan aliran dan kehilangan tekanan pada pipa distribusi di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda.

Maksud dan Tujuan Penelitian

Maksud Penelitian:

- a. Melakukan perhitungan jumlah air bersih di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda 10 tahun kedepan.
- Melakukan perhitungan kecepatan aliran dan kehilangan tekanan pada pipa distribusi di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda.

Tujuan Penelitian

- a. Mendapatkan hasil jumlah air bersih di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda 10 tahun kedepan.
- Mendapatkan hasil perhitungan kecepatan aliran dan kehilangan tekanan pada pipa distribusi di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda.

Manfaat Penelitian

Manfaat dari penelitian Analisis Pemenuhan Kebutuhan Air Bersih Di Kelurahan Sindang Sari Kecamatan Sambutan Kota Samarinda, adalah sebagai berikut:

- Dengan adanya penelitian ini diharapkan dapat mengetahui sistem distribusi air bersih pada Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda.
- 2. Diharapkan menjadi saran atau pedoman bagi pemerintah dalam menentukan

kebijakan daerah yang diteliti di bidang Penyediaan Air Bersih.

BAB II DASAR TEORI

Pengertian Air Bersih

Air merupakan salah satu sumber daya alam yang memiliki fungsi sangat penting bagi kehidupan dan perikehidupan manusia, air merupakan kebutuhan pokok bagi kehidupan, karena kehidupan di dunia tak dapat berlangsung terus tanpa tersediaan air yang cukup. Penyebab susahnya mendapatkan air bersih adalah adanya pencemaran air yang di sebabkan oleh limbah industri, rumah tangga, dan limbah pertanian. Selain itu disebabkan oleh adanya pembangunan dan penebangan hutan secara liar menyebabkan berkurangnya kualitas mata air dari pegunungan. Akibatnya air bersih terkadang menjadi barang langka. (asmadi,dkk, 2007)

Pemakaian Air

Proyeksi jumlah kebutuhan air bersih dapat dilakukan berdasarkan perkiraan kebutuhan air untuk berbagai macam tujuan ditambah perkiraan kehilangan air. Adapun kebutuhan air untuk berbagai macam tujuan pada umumnya dapat dibagi dalam kebutuhan domestik dan kebutuhan non domestik.

- 1. Kebutuhan domestik
- Sambungan rumah
- Sambungan kran umum
- 2. Kebutuhan non domestik
- Sarana peribadahan
- Sarana pendidikan
- Sarana perkantoran
- Sarana kesehatan
- Sarana perekonomian

Kehilangan Air (Non Revenue Water/ NRW)

Kebocoran merupakan permasalahan klasik yang tidak berujung. Pola pikir yang mendasari terjadinya kebocoran pada pipa pada jaringan air minum (bersih) diawali dari pemikiran bahwa kebocoran air tidaklah berbahaya bagi lingkungan dan manusia secara harfiah. Berbeda dengan jaringan pipa transportasi minyak dan gas yang dari awal dirancang dan dikonstruksi secara teliti dan terawasi dengan baik dengan tujuan menghindari kebocoran (fisik) pada pipa transportnya.

Syarat Kualitas Air Bersih

Syarat kualitas air bersih artinya air harus memenuhi syarat-syarat yang mencakup sifat-sifat fisika dan sifat-sifat kimiaSyarat kualitas air bersih yang mencakup sifat-sifat biologis tidak dicantumkan dengan anggapan bahwa bakteri dan kuman penyakit dapat dihilangkan dengan memasak air hingga + 110 C.

Proyeksi Penduduk

Proyeksi penduduk adalah suatu metode untuk menentukan atau memperkirakan jumlah penduduk dimasa mendatang. Dasar perhtunngan proyeksi penduduk adalah kondisi perkembangan penduduk setempat pada tahun — tahun sebelumnya. Setelah diketahui prosentase perkembangan penduduk tiap tahunnya, maka dapat diperkirakan jumlah penduduk untuk tahun rencana proyeksi.

1. Metode Geometrik

Dengan menggunakan metode geometrik, maka perkembangan penduduk daerah studi dapat dihitung dengan formula sebagai berikut :

Rumus:

$$Pn = Po + (1+r)^n$$

Dimana, Pn = Proyeksi Penduduk tahun ke n

Po = Penduduk Tahun dasar

r = Laju pertumbuhan penduduk (%)

n = Tahun ke n (tahun proyeksi)

2. Metode Aritmatik

Dengan menggunakan metode proyeksi aritmatik, maka perkembangan penduduk studi dapat dihitung dengan formula sebagai berikut : Rumus :

Pn = Po + nr

r = (Po - Pt)/t

dimana:

Pn = Jumlah penduduk pada n tahun yang akan datang

Po = Jumlah penduduk pada akhir tahun

Pt = Jumlah penduduk pada awal tahun data

n = Jumlah tahun proyeksi

t = Jumlah tahun data

Proyeksi Fasilitas Sosial Ekonomi

Seperti halnya data penduduk, data fasilitas sosial ekonomi yang ada pada daerah di Kelurahan Sungai Siring juga perlu diperhitungkan dalam memenuhi kebutuhan air bersih pada aktivitas sehari-hari dalam fungsinya. Untuk menghitung proyeksi fasilitas sosial ekonominya dipakai data

perkembangan pertumbuhan penduduk sebagai bahan pertimbangan. Ini sesuai dengan pengertian bahwa fasilitas - fasilitas yang dibutuhkan adalah tuntutan kebutuhan masyarakat, artinya banyaknya fasilitas yang harus tersedia berbanding lurus dengan jumlah penduduk yang menggunakan fasilitas tersebut.

Untuk perhitungannya, dipakai perumusan sebagai berikut:

Rumus:

 $fn = w \cdot fo$

Dimana:

fn = Jumlah fasilitas untuk tahun ke-n

 w = Perbandingan jumlah penduduk pada tahun ke-n dengan jumlah penduduk pada tahun ke-0.

fo = Jumlah fasilitas jumlah fasilitas yang ada pada tahun data.

Rumus Persamaan Hazen Williams

Adapun Rumus Persamaan Hazen Williams, sbb:

Q = 0,2785. CHW. D2,63. S0,54

Dimana:

Q = Debit/Kapasitas (m3/det)

CHW = Koefisien kekasaran pipa

D = Diameter pipa (m)

S = Head loss per-panjang pipa (m)

Adapun, Friksi atau gesekan yang terjadi antara aliran air dengan dinding pipa merupakan kehilangan tekanan terbesar dari suatu system perpipaan. Rumus yang digunakan untuk menghitung kehilangan tekanan pada pipa induk maupun pipa cabang serta pipa pelayanan adalah hasil formulasi dari Hazen Williams.

Hf =
$$\left(\frac{Q}{0,2785 \ x \ Chw \ x D^{2,63}}\right)$$
.L

Dimana:

O = Debit/Kapasitas (m3/det)

CHW = Koefisien kekasaran pipa

D = Diameter pipa (m)

L = Panjang Pipa (m)

Menghitung kecepatan aliran dengan menggunakan persamaan Hazen-William:

 $V = 0.85 \cdot C.R0.63.S0.54$

Dimana: V = kecepatan aliran dalam pipa m/d

0.85 = konstanta

C = nilai koefisien kekasaran

R = jari-jari

S = Slope kemiringan Hf/L

Analisa perhitungan besarnya tekanan yang terjadi .

Rumus: (**p. g. h**)

Dimana, p = Masaa air 1000 kg/m3

g = Gravitasi Bumi

h = Elevasi Tanah

Kehilangan Head Minor (Minor Losses)

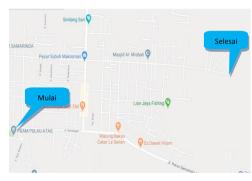
Selain kehilangan yang disebabkan oleh gesekan pada suatu jalur pipa juga terjadi kerugian karena kehilangan karena pelebaran pipa,karena penyempitan mendadak pada pipa, kelengkapan pipa seperti belokan, siku, sambungan, dan katup pada pipa maka untuk mencari kehilangan tekanan menggunakan rumus :

hm = K x(V2/2xg)

dimana:

hm = kehilangan tekanan pada accessories (m)

K = Nilai koefesien pada accessories


V = Kecepatan aliran (m/det)

g = gravitas

BAB III METODOLOGI PENELITIAN

Lokasi Penelitian

Lokasi penelitian ini berada di Kelurahan Sindang Sari, Kecamatan Sambutan, Kota Samarinda. Adapun peta lokasi penelitian dilampirkan pada gambar di bawah :

Data Sekunder

Data Jumlah Penduduk

Data Penduduk yang digunaka pada penelitian ini yaitu data penduduk di Kelurahan Sindang Sari dalam 10 tahun kebelakang, dari tahun 2010 s/d 2019 adalah sebagai berikut:

Tabel 3.1 Data Jumlah Penduduk Kelurahan Sindang Sari, Kecamatan Sambutan.

NO	TAHUN	JUMLAH PENDUDUK (JIWA)
1	2010	2.223
2	2011	2.387
3	2012	2.523
4	2013	2.679
5	2014	2.812
6	2015	2.902
7	2016	3.194
8	2017	3.476
9	2018	3.632
10	2019	3.702

Bangunan Infrastruktur

dibawah ini:

Dengan luas wilayah 450 km² Kelurahan Sindang Sari, Kecamatan Sambutan tentu saja memiliki penduduk yang padat, maka daerah ini juga banyak mempunyai infrastruktur seperti sekolah, tempat ibadah, dan bangunan lainnya yang akan dilampirkan jumlahnya dalam lampiran tabel

Tabel 3.2 Jumlah Infrastruktur Kelurahan Sindang Sari, Kecamatan Sambutan

No	Bangunan	Jumlah
	0	
1	Sekolah Dasar (SD)	2
2	Sekolah Menengah Pertama (SMP)	1
3	Taman Kanak-kanak (TK)	2
4	Masjid	1
5	Musholla	9
6	Gereja	1
7	Kantor Kelurahan	1
8	Posyandu	4

Jumlah Pipa dan Accesories Pipa

Panjang pipa dan accessories yang digunakan berdasarkan survey dilapangan dan dilampirkan pada tabel dibawah ini :

Tabel 3.3 Panjang Pipa Penanganan

No		Pipa	<u>U 1</u>	Panjang Pipa (m)
1	P1	\rightarrow	P2	107
2	P2	\rightarrow	P3	810
3	P3	\rightarrow	S10	375
4	S10	$\overset{\rightarrow}{\rightarrow}$	P5	268
5	P5	\rightarrow	P6	465
6	P5	\rightarrow	P7	564
7	P5	\rightarrow	S3	206
8	S3	\rightarrow	S6	86
9	S6	\rightarrow	S9	114
10	S9	\rightarrow	P8	383
11	P3	\rightarrow	S1	208
12	S1	\rightarrow	S2	375
13	S2	\rightarrow	S3	273
14	S10	\rightarrow	S2	208
15	S2	\rightarrow	S5	97
16	S1	\rightarrow	S4	105
17	S4	\rightarrow	S7	107
18	S4	\rightarrow	S5	370
19	S5	\rightarrow	S6	286
20	S5	\rightarrow	S8	93
21	S7	÷	S8	367
22	S8	\rightarrow	S9	288
23	S7	\rightarrow	P4	278
	Jur	6.433		

Tabel 3.4 Accessories Pipa

	- uno er ev . 1 zeeeenno er ep u			
No	Nama Sambungan (Accessories)	Jumlah		
1	Tee Reducer	7		
2	Tee	1		
3	Elbow	2		
4	Cross	3		

Teknik Pengumpulan Data

Pengumpulan data untuk Analisa pemenuhan kebutuhan air bersih di Kelurahan Sindang Sari diperoleh dengan dua pendekatan yaitu data primer dengan cara pengkuran dan peninjauan langsung ke lapangan dan data sekunder diperoleh dengan cara mencari data pendukung dari instansi atau badan pengelola terkait dengan penelitian ini.

- 1. Data primer
 - Survei lapangan peninjauan lokasi
 - Dokumentasi di lapangan
- 2. Data sekunder
 - Data Jumlah Penduduk dari Kota Samarinda , Kelurahan Sindang Sari Kecamatan Sambutan.

BAB IV PEMBAHASAN

Umum

Kecamatan Sambutan terdiri dari 5 kelurahan salah satunya Kelurahan Sindang Sari yang memiliki luas wilayah mencapai 450 km². Sementara jumlah penduduk Kelurahan Sindang Sari mencapai 3.702 jiwa pada tahun 2019.

Letak Geografis

Secara geografis Kelurahan Sindang sari mempunyai luas wilayah mencapai 450 km². Secara adminsitratif batas wilayahnya adalah sebagai berikut :

Sebelah Utara : Kelurahan Makroman

Sebelah Selatan: Kabupaten Kutai Kartanegara

dan Sebagian Kecil Kelurahan

Pulau Atas

Sebelah Barat : Kelurahan Makroman

Sebelah Timur : Kabupaten Kutai Kartanegara

Analisa Kebutuhan Air Bersih Jumlah Kebutuhan Air

SR	HU	Pendidikan	Masjid	Mushola	Gereja	Perkantoran	Puskemas
t/Det)	(Lt/Det)	(Lt/Det)	(Lt/Det)	(Lt/Det)	(Lt/Det)	(Lt/Det)	(Lt/Det)
2,52	0,41	0,09	0,02	0,10	0,02	0,0116	0,01
2,65	0,43	0,09	0,02	0,10	0,02	0,0116	0,01
2,78	0,45	0,09	0,02	0,10	0,02	0,0116	0,01
2,92	0,47	0,09	0,02	0,10	0,02	0,0116	0,01
3,06	0,49	0,09	0,02	0,10	0,02	0,0116	0,01
3,21	0,52	0,09	0,02	0,10	0,02	0,0116	0,01
3,36	0,54	0,09	0,02	0,10	0,02	0,0116	0,01
3,52	0,57	0,09	0,02	0,10	0,02	0,0116	0,01
3,68	0,59	0,09	0,02	0,10	0,02	0,0116	0,01
3,85	0,62	0,09	0,02	0,10	0,02	0,0116	0,01

Jumlah Total Kebutuhan Air

	Jumlah	Kehilangan Air	Total
Tahun	(Lt/Det)	20% (Lt/Det)	(Lt/Det)
2020	3,19	0,64	2,55
2021	3,34	0,67	2,67
2022	3,49	0,70	2,79
2023	3,65	0,73	2,92
2024	3,81	0,76	3,05
2025	3,98	0,80	3,19
2026	4,16	0,83	3,33
2027	4,34	0,87	3,48
2028	4,53	0,91	3,63
2029	4,73	0,95	3,79

Analisa Jaringan Distribusi

Pipa	Dari	Menuju	Panjang (m)	Chw	Dia (mm)	Kecepatan (m/detik)	Headlos (m)
1	P1	P2	107	130	200	0,405	0,048
2	P2	P3	810	130	200	0,405	0,367
3	P3	P10	375	130	200	0,405	0,170
4	P10	P5	268	130	200	0,405	0,121
5	P5	P6	465	130	200	0,405	0,211
6	P5	P7	564	130	200	0,405	0,255
7	P5	S3	206	130	200	0,203	0,026
8	S3	S6	86	130	200	0,203	0,011
9	S6	S9	114	130	200	0,203	0,014
10	S9	P8	383	130	200	0,405	0,173
11	P3	S1	208	130	200	0,405	0,094
12	S1	S2	375	130	150	0,254	0,100
13	S2	S3	273	130	150	0,254	0,073
14	S10	S2	208	130	150	0,254	0,056
15	S2	S5	97	130	150	0,254	0,026
16	S1	S4	105	130	200	0,405	0,048
17	S4	S7	107	130	200	0,405	0,048
18	S4	S5	370	130	150	0,254	0,099
19	S5	S6	286	130	150	0,254	0,077
20	S5	S8	93	130	150	0,254	0,025
21	S7	S8	367	130	150	0,254	0,098
22	S8	S9	288	130	150	0,254	0,077
23	S7	P4	278	130	150	0,254	0,074
	Total 6.433,00						2,293
	Rata - Rata						0,100

Analisa Perhitungan Tekanan

Node	Elevasi	Tekanan (N/m²)
P1	7,21	70.730,100
P2	7,00	68.670,000
P3	6,98	68.473,800
P4	5,00	49.050,000
P5	6,76	66.315,600
P6	6,66	65.334,600
P7	6,98	68.473,800
P8	6,56	64.353,600
S1	6,72	65.923,200
S2	6,54	64.157,400
S3	6,43	63.078,300
S4	6,71	65.825,100
S5	6,53	64.059,300
S6	6,43	63.078,300
S7	6,70	65.727,000
S8	6,51	63.863,100
S9	6,42	62.980,200
S10	6,77	66,413,700

BAB V PENUTUP

Kesimpulan

Berdasarkan dari hasil perhitungan maka dapat diambil dua kesimpulan sebagai berikut:

 Berdasarkan dari hasil analisa proyeksi pertumbuhan penduduk di Kelurahan Sindang Sari, Kecamatan Sambutan Kota Samarinda pada tahun 2020 jumlah penduduk sebesar 3.893 jiwa dengan kebutuhan air bersih = 2,55 liter/detik, sedangkan pada tahun rencana 2029 jumlah penduduk sebesar 5.944 jiwa dengan kebutuhan air bersih = 3,79 liter/detik.

- 2. Dalam melakukan perhitungan didapat hasil sebagai berikut :
 - Kecepatan Aliran rata-rata (V) = 7,205/23 = **0,313** m/detik. (Hasil perhitungan pada table 4.13)
 - Kehilangan Tekanan Pada Pipa (Head Loss) rata-rata = 2,293/23 = **0,100** m (Hasil perhitungan pada table 4.13)

Saran

Untuk merencanakaan jaringan distribusi pipa air bersih pada suatu daerah sebaiknya diadakan pengecekan dan pemeriksaan secara berkala pada meteran dan pipa-pipa utama serta pipa yang menyalurkan air ke masing-masing rumah agar dapat diketahui menjadi apa saja yang masalah. sehingga masalah yang terjadi bisa ditekan seminimal mungkin.

DAFTAR PUSTAKA

Asmadi, dkk. 2011. *Teknologi pengolahan air minum*. Yogyakarta: Gosyen

Direktorat Jenderal Cipta Karya Kementerian Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia, 2000

Dony, Ariyanto. 2007. Analisa kebutuhan air bersih dan ketersediaan sumber air di IPA sumur dalam Banjarsari PDAM Kota Surakarta terhadap jumlah pelanggan. Fakultas Teknik Sipil Universitas Sebelas Maret surakarta.Edisono, Sutarto, dkk, 1997. Drainase Perkotaan, Gunadarma, Jakarta.

 $https:\!/\!/samarindakota.bps.go.i$

Juli, Soemirat Slamet. Kesehatan Lingkungan. Yogyakarta: Gadjah Muda University Press. 2002.

Kiki Komalia, 2008. Analisa pemakaian air bersih untuk Kota Pematang Siantara. Fakultas Teknik Sipil Universitas HKBP Nommensen. Prof. Drs. Sutrisno Hadi, MA. 2004. Analisa regresi. Yogyakarta: Andi Offset.

Peraturan Menteri Kesehatan Nomor 416/Menkes/PER/IX/1990 tentang

- Syarat-Syarat dan Pengawasan Kualitas Air bersih. Jakarta. 1990.
- Peraturan Menteri Kesehatan Republik Indonesia No. 492 Tahun 2010 tentang Persyaratan Kualitas Air Minum.
- Ricki M, Mulia. *Kesehatan Lingkungan*. Yogyakarta: Graha Ilmu. 2005
- Said, N.I. Teknologi Pengelolaan Air Minum "Teori dan Pengalaman Praktis". Jakarta Pusat: Pusat Teknologi Lingkungan. 2008
- Saputra, Lyond, 2013. *Pengantar Kebutuhan Dasar Manusia*. Tanggerang Selatan: Binarupa Aksara Publiser.
- Sugiono, 2009. *Memahami Penelitian Kualitatif*. Bandung: Penerbit Alfabeta.
- Suriawiria, Unus. *Air Dalam Kehidupan Dan Lingkungan Yang Sehat*. Bandung: Alumni. 1996
- Utami Inik B, and dkk. *Pelestarian Air Bersih*. Solo: Tiga Serangkai Pustaka Mandiri. 2009.