Kurva S: Jurnal Keilmuan dan Aplikasi Teknik Sipil

Vol. ##, No. ##, Month Year, pp. ##-### p-ISSN: 2339-2665, e-ISSN: 2502-8448

DOI: 10.31293/teknikd

PENGARUH ADDITIVE NORMET TANCEM 8R TERHADAP BETON K-250

Awang Muhammad Orga Setyawan¹, Nama Penulis², Nama Penulis³

1,2 Afiliation ³Afiliation

Email: ¹Penulis@xxxx.com, ²Penulis@xxxx.xom, ³Penulis@xxx.xom

Artikel Informasi

Riwavat Artikel

Diterima, Tanggal Bulan Tahun Direvisi, Tanggal Bulan Tahun Disetujui, Tanggal Bulan Tahun

Kata Kunci:

Kata Kunci 1 Kata Kunci 2 Kata Kunci 3

ABSTRAK

Kita melihat perkembangan pengetahuan teknologi dibidangkonstruksi hingga menghasilkan berbagai kontruksi-kontruksi baru dalam duniakonstruksi. Kebutuhan akan material salah satunya adalah penggunaan materialmenyebabkan kebutuhan bahan dan peningkatan sumber daya manusia di bidangkontruksi.

Material beton tersebut merupakan salah satu bahan konstruksi yangbanyak digunakan dalam pelaksanaan perencanaan bangunan. Cara meperolehnyadengan mencampurkan semen portland, air, agregat halus, agregat kasar, danterkadang bahan tambah yang sangat bervariasi mulai dari bahan kimia sampai bahan tambahan bangunan non-kimia sampai, pada perbandingan tertentu pada itu dapat diketahui campuran tersebut. Hal dituangkan dalam cetakan kemudian dibiarkan sampai mengeras seperti batuan.

Kekuatan, keawetan, dan sifat beton tergantung pada sifat-sifat bahandasar, nilai perbandingan bahan-bahannya, dan cara pengadukan, maupun cara pengerjaan selama penuangan adukan beton, cara pemadatan dan cara perawatan selama peroses pengerasan

ABSTRACT

Keywords:

Keywords 2

Keywords 3

Keywords 1

1

This is an open access article under the <u>CC BY-SA</u>license.

Penulis Korespondensi:

Nama Korespondensi Afiliation

Email: Penulis@pppp.com

Journal homepage: http://ejurnal.untag-smd.ac.id/index.php/TEKNIKD/index

2

PENDAHULUAN

Kita melihat perkembangan pengetahuan dan teknologi dibidangkonstruksi hingga menghasilkan berbagai kontruksi-kontruksi baru dalam duniakonstruksi. Kebutuhan akan material salah satunya adalah penggunaan materialmenyebabkan kebutuhan bahan dan peningkatan sumber daya manusia di bidangkontruksi.

Material beton tersebut merupakan salah satu bahan konstruksi yangbanyak digunakan dalam pelaksanaan perencanaan bangunan. Cara meperolehnyadengan mencampurkan semen portland, air, agregat halus, agregat kasar, danterkadang bahan tambah yang sangat bervariasi mulai dari bahan kimia sampai bahan tambahan bangunan non-kimia sampai, pada perbandingan tertentu pada campuran tersebut. Hal itu dapat diketahui dengan dituangkan dalam cetakan kemudian dibiarkan sampai mengeras seperti batuan.

Kekuatan, keawetan, dan sifat beton tergantung pada sifat-sifat bahandasar, nilai perbandingan bahan-bahannya, dan cara pengadukan, maupun cara pengerjaan selama penuangan adukan beton, cara pemadatan dan cara perawatan selama peroses pengerasan.

Dari sisi inilah saya terbetik untuk melakukan uji kuat tekan beton dalam jumlah air tertentu dengan additive yang berbeda yakni normet tancem 8r yang penulis beri judul "Pengaruh air terhadap Slump Beton k-250 dengan

menggunakan additive normet tancem 8r".

METODE PENELITIAN

Penelitian ini dilakukan di Laboratorium Kaltim Jaya Beton. Pada penelitian ini metode yang digunakan adalah metode eksperimen di Laboratorium dengan melakukan suatu percobaan secara langsung. Metode eksperimen pada penelitian ini dilakukan dengan cara membandingkan beton normal tanpa bahan tambah, dengan beton normal yang menggunakan superplasticizer type-G sebagai bahan tambah pengganti sebagian semen. Kedua beton tersebut akan diuji dengan pengujian kuat tekan beton. Dari hasil pengujian tersebut, diharapkan dapat mengetahui pengaruh penggunaan abu arang kayu sebagai bahan tambah pada

campuran beton normal..

HASIL DAN PEMBAHASAN

Pengujian Material Pada penelitian ini, langkah awal yang harus dilakukan adalah pengujian material yang akan digunakan dengan tujuan untuk mengetahui karakteristik, kualitas dan parameter lainnya yang diperlukan dalam perencanaan campuran beton.

Pengujian material dilakukan pada semua bahan material yang akan digunakan dalam campuran beton. Pengujian material tersebut meliputi sebagai berikut :

1. Pemeriksaan Semen Portland

Semen portland yang digunakan adalah semen Tonasa PCC (PortlandComposite Cement) type 1 dengan berat 50 kg. Pemeriksaan semen secaravisual menyimpulkan bahwa semen

dalam keadaan baik yaitu berbutir halus, adapun pemeriksaan kehalusan semen dengan referensi dari (SNI 15-2530-1991). Pemeriksaan tersebut dilakukan untuk mendapatkan nilai

kehalusan dari semen Portland, semakin halus butiran semen, maka reaksi hidasi semen akan semakin cepat. Kehalusan semen dapat dihitung dengan menggunakan rumus sebagai berikut :

$$F = \frac{A}{B} \times 100\%$$

Keterangan:

F: Kehalusan semen portland

A: Berat semen yang tertahan di masing-masing saringan

B: Berat semen semula

a. Hasil Pengujian

Tabel 4.1 Pengujian Kehalusan Semen

Pengujian Kehalusan Semen							
No Saringan	Berat Tertahan (Gram)	Kehalusan (%)					
No. 100	0	0					
No.200	2	4					
Pan	48	96					
Jumlah	50	100					

Sumber : Hasil Perhitungan

Dari hasil pemeriksaan di atas didapat data-data yang telah memenuhi syarat yang sesuai dengan standar ketetapan kehalusan semen portland. Benda uji memenuhi syarat kehalusan o% tertahan di saringan No. 100 dan pada saringan No. 200 menunjukkan kehalusan sebesar 4% (maksimal 22% yang tertahan diatas saringan No. 200). dengan demikian semen sangat layak digunakan sebagai bahan campuran beton karena berbutir halus.

2. Pemeriksaan Air

Air yang digunakan untuk bahan campuran pembuatan beton harus memenuhi syarat (SNI 03-2834-2000). Air harus bersih dan tidak mengandung lumpur, minyak, dan benda terapung lainnya yang dapat dilihat secara visual. Setelah dilakukan pemeriksaan secara visual, air yang akan digunakan dianggap memenuhi syarat dan dapat digunakan dalam campuran beton. karena hasilnya menunjukkan sifat-sifat antara lain: air tidak bewarna, tidak berbau, jernih (tidak mengandung lumpur), dan tidak terdapat benda-benda terapung lainnya.

3. Pemeriksaan agregat halus

1. Pengujian Kadar Air Agregat Halus (SNI 03-1971-2008)

Kadar air agregat adalah perbandingan antara berat air yang terkandung pada agregat dengan agregat dalam keadaan kering yang dinyatakan dalam satuan persen. Tujuan dari pengujian ini adalah untuk mengetahui persentase kadar air yang terdapat dalam agregat. Berdasarkan hasil pengujian diperoleh nilai kadar air agregat halus sebesar 2,792%, data tersebut diperoleh dari tabel 4.2.

Tabel 4.2 Kadar Air Agregat Halus

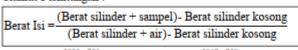
UDATAN	URAIAN					
UKAIAN	(gr)	(gr)				
Berat Cawan	= C gr	33	32			
Berat Cawan + sampel	= A gr	421	418			
Berat Cawan + sampel kering oven	=Bgr	412	406			
Kadar air = $\frac{\text{(A-B)}}{\text{(B-C)}} \times 100\%$		2.375	3.209			
Kadar air rata-rata (%)	2.79	02				

Sumber : Hasil Perhitungan

Perhitungan:

2. Pengujian Bobot Isi Agregat Halus (SNI 03-4804-1998)

Bobot isi agregat adalah perbandingan antara berat agregat terhadap volume agregat. Pengujian bobot isi dibedakan menjadi 2 metode yaitu, bobot isi lepas dan bobot isi goyang. Berdasarkan hasil pengujian didapat nilai sebesar 1,585 dari tabel 4.3.


Tabel 4.3 Bobot Isi Agregat Halus

Kadar Air rata-rata=2,792%

Kondisi : Lepas								
Uraian	Halus (Pasir Palu)	LEPAS						
Claian	Haius (Fasir Faiu)	I	II					
Berat silinder + sampel	= A gram	5099	5067					
Berat silinder + air	= B gram	3665	3665					
Berat silinder kosong	= C gram	758	758					
Berat Isi	=(A-C):(B-C)	1.493	1.482					
Berat isi rata - rata		1.488	$\mathrm{gr}/\mathrm{cm}^2$					

Sumber: Hasil Perhitungan

Rumus Perhitungan:

Berat Isi I = $\frac{5099 \cdot 758}{3665 \cdot 758}$ Berat Isi II = $\frac{5067 \cdot 758}{3665 \cdot 758}$

Berat Isi I =1.493gr/cm² Berat Isi II =1.482

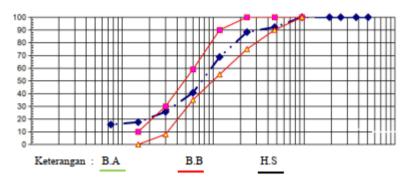
3. Pengujian Berat Jenis dan Penyerapan Agregat Halus (SNI 03-1970-2008)

Tujuan pengujian berat jenis dan penyerapan agregat halus adalah untuk mendapatkan angka berat jenis curah, berat jenis permukaan januh, berat jenis semu, dan penyerapan air pada agregat halus. Berdasarkan hasil pengujian, diperoleh hasil penyerapan pasir Palu sebesar 1,963% pada tabel 4.4.

Tabel 4.4 Berat Jenis dan Penyerapan Pasir Palu

Uraian				Penye	Penyerapan		Berat jenis (Gs)	
Berat sampel kering		=	B gram	369.00	398.00			
Berat sampel SSD		=	A gram	372.00	401.00	372.00	401.00	Г
Berat gelas + air + sampel	Т	-	C gram			1739.00	1760.00	Г
Berat gelas + air	Т	-	D gram			1509.00	1509.00	Г
Penyerapan (Absorption)		-	(A-B): B x 100 %	0.813	0.754			Г
Specific Gravity (SSD)	Т	=	A: (D+A-C)		•	2.620	2.673	Г
Rata-rata	0.783 2.647			647	Г			

Sumber: Hasil Perhitungan


4. Pengujian Analisa Saringan Agregat Halus (SNI ASTM C136:2012)

Analisa saringan agregat adalah penentuan persentase berat butiran agregat yang lolos dari satu set saringan kemudian angka-angka persentase digambar pada grafik pembagian butir. Tujuan dari pengujian ini adalah untuk mengetahui pembagian butiran agregat halus dan modulus kehalusan butiran. Berikut adalah tabel hasil pengujian analisa saringan agregat halus.

Tabel 4.5 Analisa Saringan Agregat Halus

Saringan	Berat Tertahan	Jumlah Berat	Jumlah Persen		Spesifikasi		
		Tertahan	Tertahan	Lewat	SNI, 0.	NI, 03 - 1968 - 1990	
50,8 (2")	0.00	0.00	0.00	100.00			
37,5 (11/2")	0.00	0.00	0.00	100.00			
25,4 (1")	0.00	0.00	0.00	100.00			
19,1 (3/4")	0.00	0.00	0.00	100.00			
9,52 (3/8")	0.00	0.00	0.00	100.00	100		
No. 4 (4,75 mm)	125.00	125.000	7.81	92.19	90	100	
No. 8 (2,36 mm)	62.00	187.000	11.69	88.31	75	100	
No. 16 (1,18 mm)	313.00	500.000	31.25	68.75	55	90	
No. 30 (0,6 mm)	450.00	950.000	59.38	40.63	35	59	
No. 50 (0,3 mm)	240.00	1190.000	74.38	25.63	8	30	
No. 100 (0,15 mm)	130.00	1320.000	82.50	17.50	0	10	
No. 200 (0,075 mm)	30.00	1350.000	84.38	15.63			
Pan	250.00	1600.000	100.00	0.00			

Sumber: Hasil Perhitungan

Gambar 4.1 Grafik Analisa Saringan Agregat Halus

5. Pemeriksaan Kadar Lumpur Agregat Halus (SNI 03-4141-1996)

Pmeriksaan kadar lumpur bertujuan untuk menentukan persenta sekadar lumpur yang terkandung dalam agregat halus dan agregat kasar. Berdasarkan ketentuannya agregat halus tidak boleh mengandung kadar lumpur lebih dari 5%. Jika kadar lumpur melebihi spesifikasi yang ada, mka material yang akan digunakan harus dicuci terlebih dahulu sebelum digunakan, untuk menghilangkan kadar lumpur yang berlebihan. Hasil pemeriksaan kadar lumpur pasir palu didapatkan hasil yaitu sebagai berikut :

Tabel 4.6 Pemeriksaan Kadar Lumpur Agregat Halus

URAIAN	I (gr)	II (gr)			
Berat Sampel kering (semula)	=	A gr		330	331
Berat Sampel kering (akhir)	=	B gr		319	320
Kadar silt dan clay	=	(A-B) A	x 100%	3.333	3.323
Kadar silt dan clay rata-rata (%)				3.3	28

Sumber: Hasil Perhitungan

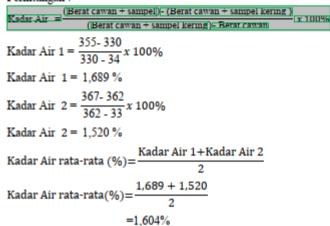
Perhitungan:

Kadar Lumpur = ,3333% 2. Kadar Lumpur = $\frac{331 \cdot 320}{331}x$ 100%

Kadar Lumpur = 3,328%

Kadar Lumpur Rata-Rata =
$$\frac{3,333 + 3,323}{2} = 3,328 \%$$

- 4. Pemeriksaan Agregat Kasar (Batu Pecah 1/2", dan 2/3")
- 1. Pengujian Kadar Air Agregat Kasar (SNI 03-1971-2008)

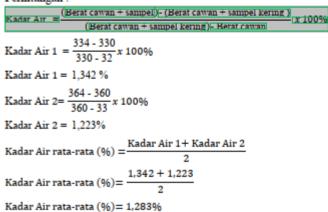

Kadar air agregat adalah perbandingan antara berat air yang terkandung pada agregat dengan agregat dalam keadaan kering yang dinyatakan dalam satuan persen. Tujuan dari pengujian ini adalah untuk mengetahui persentase kadar air yang terdapat dalam agregat kasar. Berikut adalah hasil dari pengujian kadar air agregat kasar.

Tabel 4.7 Kadar Air Agregat Kasar Batu Pecah 1/2"

URAIAN		I (gr)	II (gr)	
Berat Cawan	= C gr	34	33	
Berat Cawan + sampel	= A gr	355	367	
Berat Cawan + sampel kering oven	= B gr	330	362	
Kadar air = $\frac{\text{(A-B)}}{\text{(B-C)}} \times 100\%$		1.689	1.520	
Kadar air rata-rata (%)		1.604		

Sumber : Hasil Perhitungan

Perhitungan:



Tabel 4.8 Kadar Air Agregat Kasar Batu Pecah 2/3"

URAIAN	I (gr)	II (gr)	
Berat Cawan	= C gr	32	33
Berat Cawan + sampel	= A gr	334	364
Berat Cawan + sampel kering oven	= B gr	330	360
Kadar air = $\frac{\text{(A-B)}}{\text{(B-C)}} \times 100\%$		1.342	1.223
Kadar air rata-rata (%)	adar air rata-rata (%) 1.283		
0 1 77 (17) 1 (

Sumber : Hasil Perhitungan

Perhitungan:

2. Pengujian Bobot Isi Agregat Kasar (SNI 03-4804-1998)

Bobot isi agregat adalah perbandingan antara berat agregat terhadap volume agregat. Berdasarkan hasil penguijan didapat pilai sebesar 1242 dari tabel 40

Tabel 4.9 Bobot Isi Agregat Kasar 1/2"

	Lepas			
Uraian			I	II
Split Ex. Palu				
Berat silinder + sampel	=	A gram		5067.00
Berat silinder + air	=	B gram		3665.00
Berat silinder kosong	=	C gram		758.00
Berat isi rata-rata	=	(A-C) : (B-C) gr/cm³		1.482

Sumber: Hasil Perhitungan

Rumus Perhitungan:

Berat Isi =
$$\frac{\text{(Berat silinder + sampel)} \cdot \text{Berat silinder kosong}}{\text{(Berat silinder + air)} \cdot \text{Berat silinder kosong}}$$

Berat Isi
$$1 = \frac{5067 - 758}{3665 - 758}$$

Berat Isi rata-rata=1,482 gr/cm²

Tabel 4.10 Bobot Isi Agregat Kasar 2/3"

77	Lepas			
Uraian			I	II
Pasir Ex.Palu				
Berat silinder + sampel	=	A gram	5099.00	
Berat silinder + air	=	B gram	3665.00	
Berat silinder kosong	=	C gram	758.00	
Berat isi rata-rata	=	(A-C) / (B-C) gr/cm ³	1.493	

Sumber: Hasil Perhitungan

$$Berat Isi = \frac{(Berat \ silinder + sampel) - Berat \ silinder \ kosong}{(Berat \ silinder + air) - Berat \ silinder \ kosong}$$

Berat Isi =
$$\frac{5099 - 3844}{3665 - 3844}$$

Berat Isi =1,493 gr/cm²

3. Pengujian Berat Jenis dan Penyerapan Agregat Kasar (SNI 03-1970-2008)

Tujuan pengujian berat jenis dan penyerapan agregat kasar adalah untuk mendapatkan angka berat jenis curah, berat jenis permukaan januh, berat jenis semu, dan penyerapan air pada agregat kasar.

Tabel 4.11 Berat Jenis dan Penyerapan (Batu Pecah 1/2")

Uraian		Penyerapan		Berat jenis (Gs)		
Berat sampel kering		= B gram	380.00	365.00		
Berat sampel SSD	Т	= A gram	385.00	369.00	385.00	369.00
Berat gelas + air ÷ sampel		= C gram			1750.00	1742.00
Berat gelas + air	Т	= D gram			1509.00	1509.00
Penyerapan (Absorption)	Т	= (A-B): B x 100 %	1.316	1.096		
Specific Gravity (SSD)		= A: (D+A-C)			2.674	2.713
Rata-rata		1.206		2.693		

Sumber: Hasil Perhitungan

Tabel 4.12 Berat Jenis dan Penyerapan (Batu Pecah 2/3")

Uraian		Penye	Penyerapan		mis (Gs)		
Berat sampel kering	П	=	B gram	374.00	368.00		
Berat sampel SSD		=	A gram	375.00	369.00	375.00	369.00
Berat gelas + air ÷ sampel		=	C gram			1748.00	1743.00
Berat gelas + air		=	D gram			1509.00	1509.00
Penyerapan (Absorption)		=	(A-B): B x 100 %	0.267	0.272		
Specific Gravity (SSD)		=	A : (D+A-C)			2.757	2.733
Rata-rata				0.2	270	2.7	745

Sumber: Hasil Perhitungan

4. Pengujian Keausan Agregat Kasar (SNI 03-2417-2008)

Pengujian keausan agregat adalah salah satu pengujian untuk menentukan ketahanan agregat kasar terhadap keausan dengan menggunakan mesin Los Angeles dengan tujuan untuk mengetahui angka keausan yang dinyatakan dengan perbandingan antara berat bahan aus yang tertahan di saringangan No. 12 terhadap berat semula dalam satuan persen.

a. Hasil pengujian

Berdasarkan hasil pengujian yang tercantum pada tabel 4.13 diperoleh hasil yang memenuhi syarat SNI, sehingga agregat kasar dapat digunakan sebagai campuran beton.

Tabel 4.13 Keausan Agregat Kasar					
Lewat	Tertahan		(a) Berat sebelum	(b) Berat sesudah	
76,2 mm (3")	63,5 mm (2 1/2")				
63,5 mm (2 1/2")	50,8 mm (2")				
50,8 mm (2")	37,5 mm (11/2")				
37, 5 mm (1 1/2") 25,4 mm (1")	25,4 mm (1") 19,1 mm (3/4")				
19,1 mm (3/4")	12,7 mm (1/2")		2500		
12,7 mm (1/2")	9,52 mm (3/8")		2500		
9,52 mm (3/8")	6,35 mm (No. 3)				
6,35 mm (No. 3)	4,76 mm (No. 4)				
4,76 mm (No. 4)	2,38 mm (No. 8)				
Jumlah Berat	=	(A)	5000		
Berat tertahan saringan no. 12	=	(B)	3998		

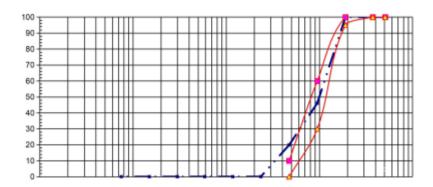
Sumber : Hasil Perhitungan

Perhitungan:

 $K_{\text{eausan}} = \frac{(5000) - (3998)}{(5000)} \times 100\%$ $K_{\text{eausan}} = 20.04\%$

9-2665, e-ISSN: 2502-8448 DOI: 10.31293/teknikd Dari hasil pengujian abrasi didapat hasil yang memenuhi syarat yaitu kehalusan tidak lebih besar dari 40%. Agregat batu hasilnya 20,04%.

5. Pengujian Analisa Saringan Agregat Kasar (SNI 03-1968-1990)

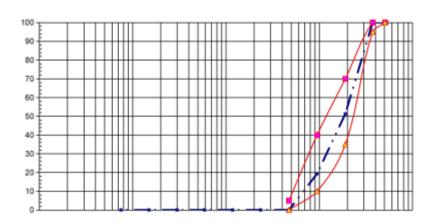

Analisa saringan agregat adalah penentuan persentase berat butiran agregat yang lolos dari satu set saringan kemudian angka-angka persentase digambar pada grafik pembagian butir. Tujuan dari pengujian ini adalah untuk mengetahui pembagian butiran agregat halus dan modulus kehalusan butiran. Berikut adalah tabel hasil pengujian analisa saringan agregat kasar.

Tabel 4.14 Analisa Saringan Agregat Kasar (Batu Pecah 1/2")

Saringan	Berat Tertahan	Jumlah Berat	Jumlah F	ersen	Spesifikasi	
Saringan	Derat Lertanan	Tertahan	Tertahan	Lewat	SNI, 03 - 1	968 - 1990
50,8 (2")	0.00	0.00	0.00	100.00	10	00
37,5 (11/2")	0.00	0.00	0.00	100.00	100	100
19,1 (3/4")	0.00	0.00	0.00	100.00	100	95
9,52 (3/8")	890.00	890.00	53.94	46.06	60	30
No. 4 (4,75 mm)	432.00	1322.00	80.12	19.88	10	0
No. 8 (2,36 mm)	328.00	1650.00	100.00	0.00		
No. 16 (1,18 mm)	0.00	1650.00	100.00	0.00		
No. 30 (0,6 mm)	0.00	1650.00	100.00	0.00		
No. 50 (0,3 mm)	0.00	1650.00	100.00	0.00		
No. 100 (0,15 mm)	0.00	1650.00	100.00	0.00		
No. 200 (0,075 mm)	0.00	1650.00	100.00	0.00		
Pan	0.00	1650.00	100.00	0.00		

Sumber: Hasil Perhitungan

Gambar 4.2 Grafik Analisa Saringan Agregat Kasar Batu 1/2"



Tabel 4.15 Analisa Saringan Agregat Kasar (Batu Pecah 2/3")

Saringan Berat Tertahan		ringan Berat Tertahan Jumlah Berat Jumlah Persen		Persen	Spesifikasi	
sarıngan	Derat Lertanan	Tertahan	Tertahan	Lewat	SNI, 03 - 19	68 - 1990
50,8 (2")	0.00	0.00	0.00	100.00	100)
37,5 (11/2")	0.00	0.00	0.00	100.00	100	95
19,1 (3/4")	755.00	755.00	48.71	51.29	70	35
9,52 (3/8")	495.00	1250.00	80.65	19.35	40	10
No. 4 (4,75 mm)	300.00	1550.00	100.00	0.00	5	0
No. 8 (2,36 mm)	0.00	1550.00	100.00	0.00		
No. 16 (1,18 mm)	0.00	1550.00	100.00	0.00		
No. 30 (0,6 mm)	0.00	1550.00	100.00	0.00		
No. 50 (0,3 mm)	0.00	1550.00	100.00	0.00		
No. 100 (0,15 mm)	0.00	1550.00	100.00	0.00		
No. 200 (0,075 mm)	0.00	1550.00	100.00	0.00		
Pan	0.00	1550.00	100.00	0.00		

Sumber: Hasil Perhitungan

Gambar 4.3 Grafik Analisa Saringan Agregat Kasar Batu 2/3"

6. Pengujian Kadar Lumpur Agregat Kasar (SNI 03-4141-1996)

Pmeriksaan kadar lumpur bertujuan untuk menentukan persentase kadar lumpur yang terkandung dalam agregat halus dan agregat kasar. Berdasarkan ketentuannya agregat kasar tidak boleh mengandung kadar lumpur lebih dari 1%. Jika kadar lumpur melebihi spesifikasi yang ada, maka material yang akan digunakan harus dicuci terlebih dahulu sebelum

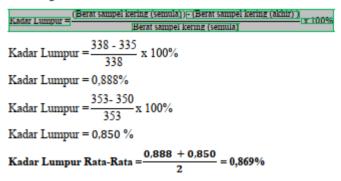
digunakan, untuk menghilangkan kadar lumpur yang berlebihan. Hasil pemeriksaan kadar lumpur batu pecah palu 1/2 dan 2/3 didapatkan hasil yaitu sebagai berikut :

Tabel 4.16 Pemeriksaan Kadar Lumpur Agregat Kasar 1/2"

Uraian	I	II	
Berat sampel kering (semula)	= A gram	410.00	378.00
Berat sampel kering (akhir)	= B gram	403.00	372.00
Kadar lumpur dan lempung	= (A-B): A x 100	1.707	1.587
Kadar lumpur dan lempung Rata-rata (%)	1.64	17	

Sumber: Hasil Perhitungan

Perhitungan:


Kadar Lumpur = (Berat sampel kering (semula)) (Berat sampel kering (akhir))
1. Kadar Lumpur = $\frac{410 - 403}{410}$ x 100%
Kadar Lumpur = 1,707 %
2. Kadar Lumpur = $\frac{378 - 372}{378}$ x 100%
Kadar Lumpur = 1,587 %
Kadar Lumpur Rata-Rata = $\frac{1,707 + 1,587}{2} = 1,647\%$

Tabel 4.17 Pemeriksaan Kadar Lumpur Agregat Kasar 2/3"

Uraian	I	II	
Berat sampel kering (semula)	= A gram	338.00	353.00
Berat sampel kering (akhir)	= B gram	335.00	350.00
Kadar lumpur dan lempung	= (A-B) : A x 100	0.888	0.850
Kadar lumpur dan lempung Rata-rata (%) 0.869			9

Sumber: Hasil Perhitungan

Perhitungan:

Berdasarkan Tabel 4.17 dan Tabel 4.18 diatas, diperoleh nilai kadar lumpur batu pecah 1/2" sebesar 1.647% sehingga batu tersebut harus dicuci terlebih dahulu sebelum digunakan sebagai

campuran beton. Untuk batu pecah 2/3" nilai kadar lumpurnya sebesar 0.869%, dimana nilai tersebut memenuhi syarat yang telah ditentukan SNI 03-4141-1996 yaitu maksimal 1%.

5. Analisa dan Hasil

1. Analisa

Analisa ini dilakukan untuk mengetahui kualitas dari bahan yang akan digunakan sebagai maerial dalam pembuatan campuran beton. Dengan memeriksa hasil perhitungan dan membandingkan dengan nilai spesifikasi yang sudah ada didalam SNI.

Tabel 4.18 Hasil Pengujian Karakteristik Bahan Campuran Beton

No	Karakteristik	Spesifikasi	Hasil	Keterangan
1	Kehalusan Semen	Maks 22%	4%	Memenuhi
2	Air	SNI 03-2834-2000		Memenuhi

Sumber: Hasil Perhitungan

Berdasarkan hasil pengujian yang telah dilakukan terhadap semen dan air, menunjukkan bahwa bahan tersbut memenuhi spesifikasi Standar Nasional Indonesia (SNI) yang telah ditentukan.

Tabel 4.19 Hasil Pengujian Karakteristik Agregat Halus (Pasir Palu)

			•	-
No	Karakteristik	Spesifikasi	Hasil	Keterangan
1	Bobot Isi	Min. 1,3 gram/cm ³	1.488 gr/cm ³	Memenuhi
2	Berat Jenis	Min. 2,5	2.647	Memenuhi
3	Penyerapan	0,2% - 2%	0,783%	Memenuhi
4	Kadar Air	Maks. 6%	2.792%	Memenuhi
5	Kadar Lumpur	Maks. 5%	3.328%	Memenuhi

Sumber: Hasil Perhitungan

Berdasarkan hasil pengujian yang telah dilakukan terhadap agregat halus, menunjukkan bahwa bahan tersbut memenuhi spesifikasi Standar Nasional Indonesia (SNI) yang telah ditentukan. Sehingga Pasir tersebut layak digunakan sebagai bahan campuran beton.

Tabel 4.20 Hasil Pengujian Karakteristik Agregat Kasar (Batu Palu 1/2")

No	Karakteristik	Spesifikasi	Hasil	Keterangan
1	Bobot Isi	Min. 1,3 gram/cm ³	1,483gr/cm ³	Memenuhi
2	Berat Jenis	Min. 2,54	2,693	Memenuhi
3	Penyerapan	0,2% - 4%	1,206%	Memenuhi
4	Kadar Air	Maks. 1,3%	1,604%	Memenuhi
5	Abrasi	≤ 40%	20,04%	Memenuhi
6	Kadar Lumpur	Maks. 1%	1,647%	Tidak

Sumber: Hasil Perhitungan

Berdasarkan hasil pengujian yang telah dilakukan terhadap agregat kasar (Batu Palu 1/2"), menunjukkan bahwa bahan tersbut harus dicuci terlebih dahulu sebelum digunakan, karena nilai kadar lumpur pada agregat kasar batu 1/2" melebihi spesifikasi Standar Nasional Indonesia (SNI) yang telah ditentukan yaitu maksimal 1%.

Tabel 4.21 Hasil Pengujian Karakteristik Agregat Kasar (Batu Palu 2/3")

No	Karakteristik	Spesifikasi	Hasil	Keterangan
1	Bobot Isi	Min. 1,3 gram/cm ³	1,493gr/cm ³	Memenuhi
2	Berat Jenis	Min. 2,54	2,718	Memenuhi
3	Penyerapan	0,2% - 4%	1,154%	Memenuhi
4	Kadar Air	Maks. 1,3%	0,971%	Memenuhi
5	Abrasi	≤ 40%	20,04%	Memenuhi
6	Kadar Lumpur	Maks. 1%	0,667%	Memenuhi

Sumber : Hasil Perhitungan

Berdasarkan hasil pengujian yang telah dilakukan terhadap agregat kasar (Batu Palu 2/3"), menunjukkan bahwa agregat tersebut memenuhi spesifikasi Standar Nasional Indonesia (SNI) yang telah ditentukan. Sehingga layak digunakan untuk campuran beton.

6. Perencanaan Campuran Beton (Mix Design)

Perencanaan campuran beton dalam penelitian ini mengacu pada SNI 03- 2843-2000. Langkah-langkah dalam perhitungan perencanaan campuran beton (mix design) adalah sebagai berikut :

1. Penentuan kuat tekan beton

Penentuan kuat tekan beton berdasarkan kekuatan beton pada umur 28 hari. Pada penelitian ini direncanakan kuat tekan beton 250 kg/cm2.

2. Penentuan nilai standar deviasi (S)

Deviasi standar ditetapkan untuk mengendalikan tingkat mutu pelaksanaan pencampuran beton. Semakin baik mutu pelaksanaannya, semakin kecil nilai deviasi standarnya. Pada penelitian ini ditetapkan nilai deviasi standar $S = 6 N/mm_2$

3. Penetapan nilai tambah (Margin)

Jika nilai tambah (M) dihitung berdasarkan nilai deviasi standar yang dipilih, margin (M) dapat dihitung dengan rumus $M = k \times S$, dengan k = 1,64 (merupakan ketetapan statistik yang nilainya tergantung pada persentase kegagalan hasil uji sebesar maksimum 5%).

$$M = k \times S$$

- $= 1,64 \times 6$
- $= 9.84 \text{ N/mm}_2$

4. Kuat tekan rata-rata yang direncanakan

F'cr = F'c + M

= 30 + 9,840

= 34.84 N/mm2

5. Penetapan jenis semen

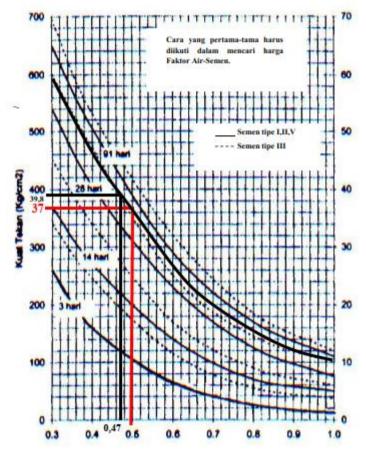
Pada penelitian ini jenis semen yang digunakan adalah semen PCC merek Tonasa.

6. Penetapan jenis agregat halus dan agregat kasar

Penetapan jenis agregat dalam bentuk agregat tidak dipecahkan atau yang dipecahkan, pada penelitian ini agregat yang digunakan adalah agregat halus (pasir) alami dari palu dan agregat kasar (batu pecah 1/2" dan 2/3") dari Palu.

7. Penentuan faktor air semen

Untuk mencari nilai faktor air semen mula-mula harus dicari nilai kuat tekan berdasarkan tipe semen, jenis agregat, umur pengujian dan bentuk benda uji seperti pada Tabel 4.23 berikut :


Tabel 4.22 Perkiraan Kekuatan Tekan (MPa) Beton dengan FAS = 0,50

Jenis semen	Jenis semen Jenis agregat		Kekuatan tekan (MPa) Pada umur (hari)			
	Insai	3	7	28	91	uji
Semen Portland	Batu tak dipecah	17	23	33	40	Silinder
Tipe I	Batu pecah	19	27	37	45	Sillinder
Semen tahan	Batu tak dipecah	20	28	40	48	Kubus
sulfat Tipe II, V	Batu pecah	23	32	45	54	Kuous
	Batu tak dipecah	21	28	38	44	Silinder
Semen Portland	Batu pecah	25	33	44	48	Sillinder
Tipe III	Batu tak dipecah	25	31	46	53	Kubus
	Batu pecah	30	40	53	60	Kuous

Sumber: Modul 3 Rancangan Campuran Beton

Dari tabel 4.23 diatas dengan menggunakan benda uji silinder dan menggunakan semen tipe I serta menggunakan agregat kasar batu pecah kemudian umur pengujian 28 hari, maka diperoleh angka 37. Maka perkiraan kuat tekan beton adalah 37 MPa dengan FAS beton normal sebesar 0,5.

Nilai faktor air semen dapat diperoleh dari grafik dengan cara membuat garis mendatar dari angka 37 MPa memotong garis FAS 0,5. Kemudian membuat kurva baru yang melalui titik potong tersebut. Setelah mendapatkan kurva baru selanjutnya membuat kembali garis mendatar hingga memotong kurva yang baru dari angka kuat tekan rata- rata yang direncanakan, kemudian tarik garis lurus kebawah maka akan diperoleh nilai faktor air semen (FAS). Grafik faktor air semen adalah sebagai berikut :

Gambar 4.4 Grafik Hubungan faktor air semen dan kuat tekan beton untuk benda uji silinder

Dari grafik diperoleh nilai Fas sebesar 0,47 untuk benda uji silinder, dan nilai faktor air semen maksimum didapat sebesar 0,60 dari tabel. Sehingga yang digunakan adalah nilai 0,47 karena yang diambil nilai yang terendah.

Tabel 4.23 Kadar Semen Minimum dan Faktor Air Semen Maksimum

KONDISI LINGKUNGAN	Jumlah semen minimum per m³ beton (kg)	Nilai faktor air- semen maksimum
Beton di dalam ruang bangunan :		
a. Keadaan keliling non-korosif	275	0,60
b. Keadaan keliling korosif disebabkan oleh	325	0,52
kondensasi atau uap-uap korosif		
Beton di luar ruang bangunan :		
a. Tidak terlindung dari hujan dan terik matahari langsung	325	0,60
b. Terlindung dari hujan dan terik matahari Langsung	275	0,60
Beton masuk ke dalam tanah :		
a. Mengalami keadaan basah dan kering Berganti - ganti	325	0,55
b. Mendapat pengaruh sulfat dan alkali dari		Lihat Tabel 5

Kurva S: Jurı Vol. ##, No. #

8. Penetapan nilai slump

Pada penelitian ini nilai slump ditetapkan setinggi (10 ± 2) mm.

9. Besaran butiran agregat maksimum

Dalam penelitian ini ditetapkan ukuran agregat maksimum sebesar 40 mm.

10. Jumlah air pengaduk bebas

Untuk mendapatkan kadar air bebas melihat pada tabel 4.24 yang dibuat untuk agregat alami atau atau yang berupa batu pecah. Utuk agregat gabungan yang berupa campuran antara pasir alami dan kerikil (batu pecah) maka kadar air bebas harus diperhitungkan antara 225 - 205 kg/m3 dengan butiran maksimum 40 mm dan nilai slump 60-180 mm nilai tersebut didapat dari tabel 4.25 berikut.

Tabel 4.24 Perkiraan Kadar Air Bebas (kg/m3)

Ukuran Besar		Slump (mm)					
Butir Agregat Maksimum	Jenis Agregat	0 – 10	10 – 30	30 - 60	60 - 180		
10	Batu tak dipecah	150	180	205	225		
10 mm	Batu pecah	180	205	230	250		
20	Batu tak dipecah	135	160	180	195		
20 mm	Batu pecah	170	190	210	225		
40 mm	Batu tak dipecah	115	140	160	175		
40 mm	Batu pecah	155	175				

Sumber: SNI 03-2834-2000

Kadar air bebas dapat diperoleh dengan menggunakan rumus :

$$\frac{2}{3}$$
 (Wh) + $\frac{1}{3}$ (Wk)

Dimana Wh = Perkiraan jumlah air untuk agregat halus

Wk = Perkiraan jumlah air untuk agregat kasar

Kadar air bebas =
$$\frac{2}{3}$$
 (Wh) + $\frac{1}{3}$ (Wk)
= $\frac{2}{3}$ (225) + $\frac{1}{3}$ (205)
= 150,000 + 68,333
= 218,333 kg/m³

11. Perhitungan jumlah semen yang dibutuhkan

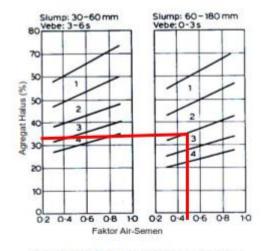
Kadar atau jumlah semen dapat dihitung dengan rumus :

Kadar semen =
$$\frac{Kadar Air Bebas}{Faktor Air Semen}$$
$$= \frac{218,333}{0,47}$$
$$= 437 \text{ kg/m}^3$$

12. Kadar semen maksimum dan kadar semen minimum

Dalam penelitian ini didapat nilai kadar semen maksimum sebesar 437 kg/m2. dan nilai kadar semen minimum didapat dari tabel 4.24.

13. Faktor air semen yang disesuaikan


Fas yang disesuaikan =
$$\frac{Kadar \, air \, bebas}{Kadar \, semen \, maksimum}$$
$$= \frac{218,333}{436,667}$$
$$= 0.47 \, \text{kg/m}^3$$

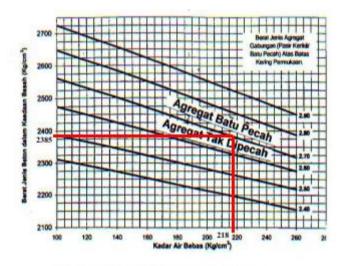
14. Penentuan susunan butir agregat halus

Berdasarkan tabel 4.5 dan grafik 4.1 gradasi agregat halus masuk dalam zona 3.

15. Penentuan persentase agregat

Berdasarkan perhitungan analisa saringan agregat gabungan didapat persentase agregat halus sebesar 33% dan agregat kasar sebesar 67%. Pada agregat kasar dibagi menjadi dua bagian yaitu batu pecah 1/2" sebesar 35% dan batu pecah 2/3" sebesar 35%.

Gambar 4.5 Grafik Persentase agregat halus


16. Penentuan berat jenis SSD agregat gabungan

Berat jenis gabungan adalah gabungan dari berat jenis agregat halus dan agregat kasar dengan persentase dari campuran agregat tersebut. Berat jenis agregat gabungan dapat diperoleh degan rumus sebagai berikut :

Bj. SSD Ag. =
$$[(\% \text{ Agregat halus}) \times (\text{Bj. ag halus})] + [(\% \text{ Batu } 1/2") \times (\text{Bj. Batu } 1/2")] + [(\% \text{ Batu } 2/3") \times (\text{Bj. Batu } 2/3")]$$

= $[(30\% \times 2,647)] + [(35\% \times 2,745)] + [(35\% + 2,649)]$
=2,7 kg/m₃

17. Penentuan berat isi beton segar

Berat isi beton dapat ditentukan dengan menggunakan grafik berikut :

Gambar 4.6 Grafik Penentuan berat beton segar

Berat jenis beton didapat sebesar 2385 kg/cm3, menentukan berat jenis beton dilakukan dengan meggunakan nilai kadar air bebas dan nilai berat jenis SSD agregat.

18. Penentuan kadar agregat gabungan

Kadar agregat gabungan

= Berat jenis beton - Kadar semen - Kadar air bebas

= 1,730 kg/cm3

19. Penentuan berat agregat halus

Berat agregat halus = $[(\% \text{ agregat halus}) \times (\text{Berat agregat})]$

- $= [(30/100) \times (1730)]$
- = 519,000 kg/m3
- 20. Penentuan berat agregat kasar

Berat agregat kasar batu pecah 1/2"

- = [(% agregat kasar) x (Berat agregat gabugan)]
- $= [(35/100) \times (1730)]$
- $= 605,5 \text{ kg/m}_3$

Berat agregat kasar batu pecah 2/3"

- = [(% agregat kasar) x (Berat agregat gabugan)]
- $= [(35/100) \times (1730)]$
- $= 605,5 \text{ kg/m}_3$
- 21. Penentuan untuk 1 m3 setelah dikoreksi

Koreksi kebutuhan bahan:

- Pasir Palu : Kadar air = 2,792 %
- Penyerapan =0,783 %
- Batu Palu : Kadar air = 1,604 %

Penyerapan = 1,206%

- Batu Palu 3 : Kadar air = 1,283 %
- Penyerapan = 0,270 %

Maka:

- Pasir Palu = $[(\% \text{ kadar air } \% \text{ penyerapan}) \times (\text{berat pasir/100})]$
- $= [(2.792 0.783) \times (605,5/100)]$
- = 10,423 (Pasir kelebihan air sebesar 10,423 liter)
- Batu Palu = $[(\% \text{ kadar air } \% \text{ penyerapan}) \times (\text{berat pasir/100})]$
- $= [(1.604 1.206 \times (605,50/100))]$
- = 2,414(Pasir kelebihan air sebesar 2,414 liter)
- Batu Palu 3 = [(% kadar air % penyerapan) x (berat pasir/100)]
- = [(1.283 0.270) x (605,5/100)
- = 6,135 (Pasir kelebihan air sebesar 6,135 liter)

$$-Air = (10,423 + 2,414 + 6,135) = 18,972$$

= 18,972 (Air ditambah sebesar 18,972 liter)

Campuran Beton Normal

- Semen =
$$437 \text{ kg (Tetap)}$$

- Batu Palu =
$$610 + 2,414 = 612,414$$
kg

- Batu Palu
$$3 = 610 + 6,135 = 616,135$$
kg

22. Volume masing - masing bahan untuk 3 silinder

Ukuran Volume Silinder = $1/4 \times \pi \times 152 \times 30$

- = 5303,57
- = 0,0053 m3

Volume campuran untuk kebutuhan 3 silinder :

Volume campuran = 0,0053 x Jumlah silinder x berat isi

- $= 0.0053 \times 3 \times 1.3$
- = 0,021 m3

Volume untuk masing - masing bahan (Beton Normal) :

- Semen = 437 x 0,021 = 9,177 kg
- Air = 237,305x 0,021 = 4,983 Ltr
- Pasir Palu = 529,423 x 0,021 = 11,118 kg
- Batu Palu = 612,414x 0,021 = 12,861 kg
- Batu Palu 3 = 616,135x 0,021 = 12,861 kg

Kebutuhan material yang akan digunakan dalam pembuatan beton normal dengan komposisi campuran yang sudah diperhitungkan dan dengan mutu beton yang sudah direncanakan.

Tabel 4.26 Kebutuhan Campuran Bahan Untuk 3 silinder

Variasi Tancem	Kebu	Kebutuhan Material Setiap Variasi Untuk 3 Silinder					
	Semen (kg)	Air (kg)	Batu 1/2 (kg)	Batu 2/3 (kg)	Pasir (kg)		
0	9.177	4.983	12.861	12.861	11,118		
2cc	9.177	4.983	12.861	12.861	11.118		

Sumber: Hasil Perhitungan

Tabel 4.27 Kebutuhan Campuran Bahan Untuk 60 silinder

No	Material	Kebutuhan 60 Silinder	Satuan
1	Semen	184	Kg
2	Air	100	Kg/Ltr
3	Pasir Palu	223	Kg

7. Pembuatan Beda Uji

Pembuatan benda uji beton cukup sederhaa namun tetap perlu memperhatikan ketelitian agar beton yang dihasilkan sesuai dengan apa yang diharapkan. Pegadukan beton dapat dibedakan menjadi dua yaitu manual dan dengan mesin. Pada penelitian ini pengadukan dilakukan secara manual dengan benda uji berupa silinder ukuran 15 x 30 cm. Adapun

langkah - langkah pembuatan benda uji beton, yaitu sebagai berikut :

- 1. Mempersiapkan alat dan bahan yang akan digunakan
- 2. Menimbang bahan yang akan digunakan sesuai dengan mix design yang telah direncanakan.
 - 3. Memasukkan bahan bahan tersebut kedalam tempat bak pengaduk.
- 5. Mengaduk semua bahan campuran beton selama kurang lebih 10 menit atau sampai semua bahan tercampur hingga merata.
- 6. Setelah itu campuran beton dituang kedalam kerucut Abrams untuk dilakukan pengujian slump.
- 7. Setelah memenuhi syarat dari pegujian slump, campuran beton dituangkan ke dalam silinder dengan kapasitas 3 liter, untuk mencari berat isi beton segar dengan dua metode, yaitu dipadatkan dan yang tidak dipadatkan.
- 8. Setelah itu campuran beton dituangkan ke dalam cetakan silinder secara perlahan sebanyak 3 lapis kemudian dipadatkan dengan batang penumbuk sebanyak 25 kali setiap lapisnya, kemudian setiap sisi cetakan dipukul menggunakan palu karet sampai airnya naik kepermukaan supaya tidak berongga.
- 9. Setelah cetakan penuh kemudian meratakan bagian permukaan beton menggunakan sendok spesi hingga rata.
- 10. Setelah itu setiap cetakan silinder beton diberi tanda serta dicatat taggal pembuatannya.

Gambar 4.7 Pembuatan Benda Uji

8. Pengujian Slump Test

Pengujian slump test dilakukan untuk mengetahui tingkat kemudahan pengerjaan. Pada penelitian ini slump rencana sebesar (10 \pm 2) mm, dengan menggunakan faktor air semen (fas) = 0,47. Hasil pengujian nilai slump dapat dilihat pada Tabel berikut :

Tabel 4.31 Nilai slump test

No			S	lump (cr	n)		Town lab	
	Variasi (cc)	3 Hari	7 Hari	14 Hari	21 Hari	28 Hari	Jumlah Rata-rata	
1	0	8	9	10	11	13	10	
2	2cc	10	11	8	10	8	9	

Sumber: Hasil Perhitungan

Gambar 4.8 Pengujian slump test beton segar

9. Perawatan Benda Uji

Pada penelitian ini, perawatan benda uji dilakukan dengan cara perendaman. perawatan beton bertujuan untuk menjamin proses hidrasi semen dapat berlangsung dengan sempurna, sehingga retak-retak pada permukaan beton dapat dihindari serta mutu beton yang diinginkan dapat tercapai. Selain itu kelembaban permukaan beton juga dapat menambah ketahanan beton terhadap pengaruh cuaca dan lebih kedap air. Perawatan (curing) dilakukan setelah beton berumur 1 hari sampai sehari sebelum dilakukan pengujian kuat tekan.

Gambar 4.9 Perawatan benda uji

p-ISSN: 2339-2665, e-ISSN: 2502-8448

10. Pengujian Kuat Tekan Beton

Pengujian kuat tekan beton dilakukan pada umur beton sesuai dengan hari yang sudah ditentukan. Langkah-langkah pengujiannya adalah :

- 1. Benda uji diangkat dari rendaman 1 atau 2 hari sebelum pengujian, kemudian dianginkan atau dilap hingga kering permukaan.
- 2. Menimbang dan mencatat berat sempel beton, kemudian diamati apakah terdapat cacat pada beton tersebut, sebagai bahan untuk laporan.
 - 3. Pengujian kuat tekan dengan menggunakan mesin uji kuat tekan beton.
- 4. Mengangkat benda uji dan meletakkannya ke dalam alat penguji, lalu hidupkan mesin, setelah itu secara perlahan alat akan menekan benda uji, dan perhatikan jarumnya.
 - 5. Mencatat hasil kuat tekan beton untuk setiap benda uji

Berikut adalah contoh perhitungan benda uji, 1 silinder beton dengan additive 3% yang berumur 3 hari :

Diketahui:

Diameter (D) = 15 cm

Tinggi (H) = 30 cm

Berat (W) = 12600 kg

• Menentukan Volume (V)

$$V = \frac{1}{4} \times \pi \times D^{2} \times H$$

$$= \frac{1}{4} \times 3,14 \times 15^{2} \times 30$$

$$= 5303,571 \text{ Cm}^{3}$$

$$= 0.0053 \text{ Cm}^{2}$$

• Menentukan luas penampang (A)

$$A = \frac{1}{4} \times \pi \times D^{2}$$
$$= \frac{1}{4} \times 3,14 \times 15^{2}$$
$$= 176,625 \text{ Cm}^{2}$$

Menentukan Bobot Isi (γ)

$$\gamma = \frac{w}{v} : H$$

$$= \frac{12600}{176,625} : 30$$

$$= 2,404 \text{ kg/cm}^3$$

Menentukan kuat tekan (kg/cm²)

Pengujian kuat tekan yang dilaksanakan pada benda uji dengan additive 2cc pada umur 3 hari diperoleh nilai bacaan dial sebesar 19 Ton, kemudian angka tersebut dikalibrasi menjadi 18,90 Ton.

- Menentukan Nilai Koreksi
 - 1. Koreksi bentuk = 0,83
 - 2. Koreksi umur = 0,40
- Menghitung Nilai Kuat Tekan Beton

1. Kuat tekan uji
$$= \frac{P}{A}$$

$$= \frac{18,90 \times 1000}{176,63}$$

$$= 107,006 \text{ kg/cm}^2$$

03 Juni 2021

11. Perbandingan Nilai Kuat Tekan Beton

Perbandingan kuat tekan beton dilakukan untuk mengetahui seberapa besar pengaruh terhadap beton normal dengan penambahan additive tancem sebesar 2c

Tabel 4.32 Data Hasil Uji Kuat Tekan Beton Normal

No	Tanggal Pembuatan beton normal	Tanggal Pemeriksaan beton normal	Kekuatan Tekan	Jumlah Keseluruhan Kuat Tekan (kg/cm2)	fc (MPa)
1	01 Juni 2021	4 Juni 2021	95.683	288.202	23.921
2	01 Juni 2021	4 Juni 2021	90.021	271.148	22.505
3	01 Juni 2021	4 Juni 2021	101.345	305.255	25.336
4	01 Juni 2021	4 Juni 2021	95.683	288.202	23.921
5	01 Juni 2021	4 Juni 2021	90.021	271.148	22.505
6	01 Juni 2021	4 Juni 2021	101.345	305.255	25.336
7	02 Juni 2021	9 Juni 2021	131.522	243.784	20.234
8	02 Juni 2021	9 Juni 2021	125.747	233.080	19.346
9	02 Juni 2021	9 Juni 2021	137.297	254.488	21.123
10	02 Juni 2021	9 Juni 2021	131.522	243.784	20.234
11	02 Juni 2021	9 Juni 2021	143.071	265.193	22.011
12	02 Juni 2021	9 Juni 2021	154.621	286.601	23.788
13	03 Juni 2021	17 Juni 2021	183.496	251.227	20.852
14	03 Juni 2021	17 Juni 2021	183.496	251.227	20.852

189.271

259.133

21.508

17 Juni 2021

2339-2665, e-ISSN: 2502-8448 DOI: 10.31293/teknikd

Tabel 4.33 Data Hasil Uji Kuat Tekan dengan additive

No	Tanggal Pembuatan beton	Tanggal Pemeriksaan beton	Kekuatan Tekan	Jumlah Keseluruhan Kuat Tekan (kg/cm2)	fc (MPa)
1	05 Juni 2021	08 Juni 2021	107.006	322.308	26.752
2	05 Juni 2021	08 Juni 2021	107.006	322.308	26.752
3	05 Juni 2021	08 Juni 2021	101.345	305.255	25.336
4	05 Juni 2021	08 Juni 2021	95.683	288.202	23.921
5	05 Juni 2021	08 Juni 2021	90.021	271.148	22.505
6	05 Juni 2021	08 Juni 2021	101.345	305.255	25.336
7	06 Juni 2021	13 Juni 2021	143.071	265.193	22.011
8	06 Juni 2021	13 Juni 2021	143.071	265.193	22.011
9	06 Juni 2021	13 Juni 2021	148.846	275.897	22.899
10	06 Juni 2021	13 Juni 2021	148.846	275.897	22.899
11	06 Juni 2021	13 Juni 2021	143.071	265.193	22.011
12	06 Juni 2021	13 Juni 2021	154.621	286.601	23.788
13	07 Juni 2021	21 Juni 2021	195.046	267.040	22.164
14	07 Juni 2021	21 Juni 2021	195.046	267.040	22.164
15	07 Juni 2021	21 Juni 2021	200.821	274.947	22.821
16	07 Juni 2021	21 Juni 2021	206.596	282.853	23.477

12. Kuat Tekan Yang Memenuhi Syarat

Pada penelitian ini mutu beton rencana adalah k-250 kg/cm2 atau setara dengan fc 20,75 MPa. Hasil uji kuat tekan beton dikumpul dan disusun sesuai urutan, kuat tekan beton dianggap memenuhi syarat bila dua hal berikut ini dipenuhi :

- 1. Tidak ada nilai kuat uji tekan (rata-rata dari kuat tekan 2 silinder) yang lebih kecil dari fc 3.5 MPa. (SNI 2847 Pasal 7.6.3.3)
- 2. Tidak ada nilai kuat uji tekan rata-rata dari 3 uji tekan yang berurutan yang lebih kecil dari fc.

Tabel 4.33 Syarat Uji Kuat Tekan Terpenuhi

Kurva S: Jurna Vol. ##, No. ##

	K	Kuat Tekan Rata-rata (MPa)			Kuat Tekan	Syarat Pasal 7.6.3.3		
KodeBeton		Ü	mur Ha	ri				Syarat
	3	7	14	21	28	rata	(a)	(b)
BN	23.92	21.60	21.29	22.05	22.20	22.11	Ok	Ok
BA	25.10	22.60	22.49	22.05	22.10	22.87	Ok	Ok

Sumber: Hasil Perhitungan

Hasil analisa diatas menunjukkan mutu beton normal dan juga mutu beton additiveTancem normet memenuhi syarat SNI. SNI Pasal 7.6.3.3:

- 1. Batas dari syarat (a) adalah = 20.75 3.5 = 17.25 MPa
- 2. Batas dari syarat (b) adalah = 20.75 MPa

Perbandingan kuat tekan beton normal dan kuat beton additive adalah

BN: 49.25%

BA: 50.75%

Selisihnya adalah

F'c= 0.76 Mpa atau 1.5%

beton normal beton additive

Gambar 4.10 Grafik Perbandingan Nilai Kuat Beton

Sumber: Tabel 4.31 dan Tabel 4.32

KESIMPULAN

Dari hasil pengujian yang telah dilakukan pada beton normal dengan jumlah benda uji 60 silinder ukuran 15 cm x 30 cm, dengan kuat tekan rencana k-250 kg/cm2 atau setara degan fc 20.75 MPa, disimpulkan bahwa :

- 1. Hasil kuat tekan rata-rata beton normal tanpa penggunaan additive sebesar K-266.47 Kg/cm atau fc =22.11 N/mm
- 2. Sedangkan hasil kuat tekan rata-rata beton dengan additive normet

tancem 8R sebesar K-275.54 Kg/ cm atau f'c=22.87 N/mm 3. Perbedaan kuat tekan beton normal dan kuat tekan beton additive adalah F'c=22.87-22.11=0.76N/mm^2 atau kenaikan 1.5%.

DAFTAR PUSTAKA